Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular mechanics of calcium–myristoyl switches

Abstract

Many eukaryotic cellular and viral proteins have a covalently attached myristoyl group at the amino terminus. One such protein is recoverin, a calcium sensor in retinal rod cells, which controls the lifetime of photoexcited rhodopsin by inhibiting rhodopsin kinase1,2,3,4,5,6. Recoverin has a relative molecular mass of 23,000 (Mr 23K), and contains an amino-terminal myristoyl group (or related acyl group) and four EF hands7. The binding of two Ca2+ ions to recoverin leads to its translocation from the cytosol to the disc membrane8,9. In the Ca2+-free state, the myristoyl group is sequestered in a deep hydrophobic box, where it is clamped by multiple residues contributed by three of the EF hands10. We have used nuclear magnetic resonance to show that Ca2+ induces the unclamping and extrusion of the myristoyl group, enabling it to interact with a lipid bilayer membrane. The transition is also accompanied by a 45-degree rotation of the amino-terminal domain relative to the carboxy-terminal domain, and many hydrophobic residues are exposed. The conservation of the myristoyl binding site and two swivels in recoverin homologues from yeast to humans indicates that calcium–myristoyl switches are ancient devices for controlling calcium-sensitive processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Superposition of the main-chain atoms of the 24 NMR-derived structures of myristoylated recoverin with two Ca2+ bound.
Figure 2: Space-filling model (a) and ribbon diagram (b) of Ca2+-free10 (left, liku.pdb) and Ca2+-bound (right) myristoylated recoverin.
Figure 3: Schematic ribbon representation of the structure of EF-2 and EF-3 of Ca2+-free (left) and Ca2+-bound (right) myristoylated recoverin.
Figure 4: Schematic ribbon representation of the structure of the N-terminal domain of Ca2+-free (top) and Ca2+-bound (bottom) recoverin.

Similar content being viewed by others

References

  1. Dizhoor, A. M. et al. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251, 915–918 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Hurley, J. B., Dizhoor, A. M., Ray, S. & Stryer, L. Recoverin's role: conclusion withdrawn. Science 260, 740 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Gray-Keller, M. P., Polans, A. S., Palczewski, K. & Detwiler, P. B. The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Neuron 10, 523–531 (1993).

    Article  CAS  Google Scholar 

  4. Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F. & Kuo, C.-H. Recoverin has S-modulin activity in frog rods. J. Biol. Chem. 268, 14579–14582 (1993).

    CAS  PubMed  Google Scholar 

  5. Chen, C. K., Inglese, J., Lefkowitz, R. J. & Hurley, J. B. Ca2+-dependent interaction of recoverin with rhodopsin kinase. J. Biol. Chem. 270, 18060–18066 (1995).

    Article  CAS  Google Scholar 

  6. Klenchin, A. K., Calvert, P. D. & Bownds, M. D. Inhibition of rhodopsin kinase by recoverin. J. Biol. Chem. 270, 16147–16152 (1995).

    Article  CAS  Google Scholar 

  7. Dizhoor, A. M. et al. The amino terminus of retinal recoverin is acylated by a small family of fatty acids. J. Biol. Chem. 267, 16033–16036 (1992).

    CAS  PubMed  Google Scholar 

  8. Zozulya, S. & Stryer, L. Calcium-myristoyl protein switch. Proc. Natl Acad. Sci. USA 89, 11569–11573 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Dizhoor, A. M. et al. Role of acylated amino terminus of recoverin in Ca2+-dependent membrane interaction. Science 259, 829–832 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L. & Ikura, M. Sequestration of the membrane-targeting myristoyl group of recoverin in the Ca2+-free state. Nature 376, 444–447 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Kamps, M. P., Buss, J. E. & Sefton, B. M. Mutation of the amino-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc. Natl Acad. Sci. USA 82, 4625–4628 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Flaherty, K. M., Zozulya, S., Stryer, L. & McKay, D. B. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709–716 (1993).

    Article  CAS  Google Scholar 

  13. Ames, J. B., Tanaka, T., Ikura, M. & Stryer, L. NMR evidence for Ca2+-induced extrusion of the myristoyl group of recoverin. J. Biol. Chem. 270, 30909–30913 (1995).

    Article  CAS  Google Scholar 

  14. Hughes, R. E., Brzovic, P. S., Klevitt, R. E. & Hurley, J. B. Calcium-dependent solvation of the myristoyl group of recoverin. Biochemistry 34, 11410–11416 (1995).

    Article  CAS  Google Scholar 

  15. Strynadka, N. C. & James, M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58, 951–998 (1989).

    Article  CAS  Google Scholar 

  16. Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21, 14–17 (1996).

    Article  CAS  Google Scholar 

  17. Ames, J. B., Porumb, T., Tanaka, T., Ikura, M. & Stryer, L. Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J. Biol. Chem. 270, 4526–4533 (1995).

    Article  CAS  Google Scholar 

  18. Herzberg, O. & James, M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 å resolution. J. Mol. Biol. 203, 761–779 (1988).

    Article  CAS  Google Scholar 

  19. Kuno, T. et al. cDNA cloning of a neural visinin-like Ca2+-binding protein. Biochem. Biophys. Res. Commun. 184, 1219–1225 (1992).

    Article  CAS  Google Scholar 

  20. Kobayashi, M., Takamatsu, K., Saitoh, S. & Noguchi, T. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family. J. Biol. Chem. 268, 18898–18904 (1993).

    CAS  PubMed  Google Scholar 

  21. Pongs, O. et al. Frequenin: a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15–28 (1993).

    Article  CAS  Google Scholar 

  22. De Castro, E. et al. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem. Biophys. Res. Commun. 216, 133–140 (1995).

    Article  CAS  Google Scholar 

  23. Ames, J. B., Tanaka, T., Stryer, L. & Ikura, M. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: Implications for the calcium-myristoyl switch. Biochemistry 33, 10743–10753 (1994).

    Article  CAS  Google Scholar 

  24. Nilges, M., Gronenborn, A. M., Brunger, A. T. & Clore, G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Protein Eng. 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  25. Brunger, A. T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, T, 1993).

    Google Scholar 

  26. Babu, Y. S., Bugg, C. E. & Cook, W. J. Structure of calmodulin refined at 2.2 å resolution. J. Mol. Biol. 204, 191–199 (1988).

    Article  CAS  Google Scholar 

  27. Ferrin, T., Huang, C., Jarvis, L. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  28. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Bacon, D. J. & Anderson, W. F. Afast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Gokel for help with the synthesis of 13-oxatetradecanoic acid; L. Kay for help with NMR experiments; and F. Delaglio and D. Garrett for computer software for NMR data processing and analysis. This work was supported by grants to L.S. and J.G. from the NIH, and to M.I. from the Medical Research Council of Canada. J.B.A. was supported by an NIH post-doctoral fellowship. M.I. is a Howard Hughes Medical Institute international research scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiko Ikura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ames, J., Ishima, R., Tanaka, T. et al. Molecular mechanics of calcium–myristoyl switches. Nature 389, 198–202 (1997). https://doi.org/10.1038/38310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38310

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing