Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Release of both native and non-native proteins from a cis-only GroEL ternary complex

Abstract

PROTEIN folding by the double-ring chaperonin GroEL is initiated in cis ternary complexes, in which polypeptide is sequestered in the central channel of a GroEL ring, capped by the co-chaperonin GroES1–3. The cis ternary complex is dissociated (half-life of ˜15 s) by trans-sided ATP hydrolysis, which triggers release of GroES4–6. For the substrate protein rhodanese, only ˜15% of cis-localized molecules attain their native form before hydrolysis2,7. A major question concerning the GroEL mechanism is whether both native and non-native forms are released from the cis complex. Here we address this question using a 'cis-only' mixed-ring GroEL complex that binds polypeptide and GroES on only one of its two rings. This complex mediates refolding of rhodanese but, as with wild-type GroEL, renaturation is quenched by addition of mutant GroEL 'traps', which bind but do not release polypeptide substrate7,8. This indicates that non-native forms are released from the cis complex. Quenching of refolding by traps was also observed under physiological conditions, both in undiluted Xenopus oocyte extract and in intact oocytes. We conclude that release of non-native forms from GroEL in vivo allows a kinetic partitioning among various chaperones and proteolytic components, which determines both the conformation and lifetime of a protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weissman, J. S. et al. Cell 83, 577–588 (1995).

    Article  CAS  Google Scholar 

  2. Mayhew, M. et al. Nature 379, 420–426 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Weissman, J. S., Rye, H. S., Fenton, W. A., Beechem, J. M. & Horwich, A. L. Cell 84, 481–490 (1996).

    Article  CAS  Google Scholar 

  4. Todd, M. J., Viitanen, P. V. & Lorimer, G. H. Science 265, 659–666 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Burston, S. G., Ranson, N. A. & Clarke, A. R. J. molec. Biol. 249, 138–152 (1995).

    Article  CAS  Google Scholar 

  6. Hayer-Hartl, M., Martin, J. & Hartl, F. U. Science 269, 836–841 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Weissman, J. S., Kashi, Y., Fenton, W. A. & Horwich, A. L. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

  8. Fenton, W. A., Kashi, Y., Furtak, K. & Horwich, A. L. Nature 371, 614–619 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Braig, K. et al. Nature 371, 578–586 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L. & Sigler, P. B. Nature struct. Biol. 3, 170–177 (1996).

    Article  CAS  Google Scholar 

  11. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F. U. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  Google Scholar 

  12. Jackson, G. S. et al. Biochemistry 32, 2554–2563 (1993).

    Article  CAS  Google Scholar 

  13. Chandrasekhar, G. N., Tilly, K., Woolford, C., Hendrix, R. & Georgopoulos, C. J. biol. Chem. 261, 12414–12419 (1986).

    CAS  Google Scholar 

  14. Viitanen, P. V. et al. Biochemistry 29, 5665–5671 (1990).

    Article  CAS  Google Scholar 

  15. Martin, J. et al. Nature 352, 36–42 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Gray, T. E. & Fersht, A. R. FEBS Lett. 292, 254–258 (1991).

    Article  CAS  Google Scholar 

  17. Ellis, R. J. & Hartl, F.-U. FASEB J. 10, 20–26 (1996).

    Article  CAS  Google Scholar 

  18. Murray, A. W. in Methods in Cell Biology Vol. 36, 581–605 (Academic, San Diego, 1991).

    Google Scholar 

  19. Shivanna, B. D., Mejillano, M. R., Williams, T. D. & Himes, R. H. J. biol. Chem. 268, 127–132 (1993).

    CAS  PubMed  Google Scholar 

  20. Schroder, J., Langer, T., Hartl, F.-U. & Bukau, B. EMBO J. 12, 4137–4144 (1993).

    Article  CAS  Google Scholar 

  21. Buckberger, A., Schröder, H., Hesterkamp, T., Schönfeld, H.-J. & Bukau, B. J. molec. Biol. (in the press).

  22. Kandror, O., Busconi, L., Sherman, M. & Goldberg, A. L. J. biol. Chem. 269, 23575–23582 (1994).

    CAS  PubMed  Google Scholar 

  23. Tandon, S. & Horowitz, P. M. J. biol. Chem. 264, 9859–9866 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burston, S., Weissman, J., Farr, G. et al. Release of both native and non-native proteins from a cis-only GroEL ternary complex. Nature 383, 96–99 (1996). https://doi.org/10.1038/383096a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383096a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing