Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversal of apoptosis by the leukaemia-associated E2A–HLF chimaeric transcription factor

Abstract

THE E2A–HLF (for hepatic leukaemia factor) fusion gene, formed by action of the t(17;19) (q22;p13) chromosomal translocation, drives the leukaemic transformation of early B-cell precursors1–4, but the mechanism of this activity remains unknown. Here we report that human leukaemia cells carrying the translocation t(17;19) rapidly died by apoptosis when programmed to express a dominant-negative suppressor of the fusion protein E2A–HLF, indicating that the chimaeric oncoprotein probably affects cell survival rather than cell growth. Moreover, when introduced into murine pro-B lymphocytes, the oncogenic E2A–HLF fusion protein reversed both interleukin-3-dependent and p53-mediated apoptosis. The close homology of the basic region/leucine zipper (bZIP) DNA-binding and dimerization domain of HLF to that of the CES-2 cell-death specification protein of Caenorhabditis elegans5 suggests a model of leukaemogenesis in which E2A–HLF blocks an early step within an evolutionarily conserved cell-death pathway6–9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Inaba, T. et al. Science 257, 531–534 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Hunger, S. P., Ohyashiki, K., Toyama, K. & Cleary, M. L. Genes Dev. 6, 1608–1620 (1992).

    Article  CAS  Google Scholar 

  3. Inaba, T. et al. Molec. cell Biol. 14, 3403–3413 (1994).

    Article  CAS  Google Scholar 

  4. Hunger, S. P., Brown, R. & Cleary, M. L. Molec. cell. Biol. 14, 5986–5996 (1994).

    Article  CAS  Google Scholar 

  5. Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E. E. & Horvitz, H. R. Nature 382, 545–547 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Horvitz, H. R., Shaham, S. & Hengartner, M. O. Cold Spring Harb. Symp. quant. Biol. 59, 377–385 (1994).

    Article  CAS  Google Scholar 

  7. Ellis, R. E. & Horvitz, H. R. Development 112, 591–603 (1991).

    CAS  PubMed  Google Scholar 

  8. Ellis, R. E., Yuan, J. Y. & Horvitz, H. R. A. Rev. Cell Biol. 7, 663–698 (1991).

    Article  CAS  Google Scholar 

  9. Wyllie, A. H. Curr. Opin. Genet. Dev. 5, 97–104 (1995).

    Article  CAS  Google Scholar 

  10. Aronheim, A., Shiran, R., Rosen, A. & Walker, M. D. Proc. natn. Acad. Sci. U.S.A. 90, 8063–8067 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Quong, M. W., Massari, M. E., Zwart, R. & Murre, C. Molec. cell Biol. 13, 792–800 (1993).

    Article  CAS  Google Scholar 

  12. Palacios, R. & Steinmetz, M. Cell 41, 727–734 (1985).

    Article  CAS  Google Scholar 

  13. Canman, C. E., Gilmer, T. M., Coutts, S. B. & Kastan, M. B. Genes Dev. 9, 600–611 (1995).

    Article  CAS  Google Scholar 

  14. Collins, M. K., Marvel, J., Malde, P. & Lopez-Rivas, A. J. exp. Med. 176, 1043–1051 (1992).

    Article  CAS  Google Scholar 

  15. Hunger, S. P. Blood 87, 1211–1224 (1996).

    CAS  PubMed  Google Scholar 

  16. Raff, M. C. Nature 356, 397–400 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Thompson, C. B. Science 267, 1456–1462 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Korsmeyer, S. J. Blood 80, 879–886 (1992).

    CAS  PubMed  Google Scholar 

  19. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Nature 348, 334 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Vaux, D. L., Cory, S. & Adams, J. M. Nature 335, 440–442 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Nunez, G., London, L., Hockenbery, D., Alexander, M., McKearn, J. P. & Korsmeyer, S. J. J. Immunol. 144, 3602–3610 (1990).

    CAS  PubMed  Google Scholar 

  22. Hockenbery, D. M., Olivai, Z. N., Yin, X.-M., Milliman, S. J. & Korsmeyer, S. J. Cell 75, 241–251 (1993).

    Article  CAS  Google Scholar 

  23. Squier, M. K. T., Sehnert, A. J. & Cohen, J. J. J. Leuk. Biol. 57, 2–10 (1995).

    Article  CAS  Google Scholar 

  24. Nossal, G. J. Cell 76, 229–239 (1994).

    Article  CAS  Google Scholar 

  25. Hengartner, M. O. & Horvitz, H. R. Cell 76, 665–676 (1994).

    Article  CAS  Google Scholar 

  26. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A. & Yuan, J. Cell 75, 653–660 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, T., Inukai, T., Yoshihara, T. et al. Reversal of apoptosis by the leukaemia-associated E2A–HLF chimaeric transcription factor. Nature 382, 541–544 (1996). https://doi.org/10.1038/382541a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382541a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing