Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Application of scanning SQUID petrology to high-pressure materials science

Abstract

High-pressure synthesis is increasingly being used in the search for new materials. This is particularly the case for superconductors1, but the synthesis products are difficult to analyse because they are small in size (50 mg) and often consist of a mixture of unknown phases exhibiting a low superconducting volume fraction. X-ray or electron diffraction cannot identify a superconductor unambiguously if it is a minority constituent. Here we report a methodology—‘scanning SQUID petrology’—that combines the use of a scanning SQUID microscope2 with petrological techniques to image and identify low concentrations of superconducting phases in complex phase assemblages. We demonstrate the power of this methodology by investigating the poorly understood origin of superconductivity in the high-pressure Sr–Cu–O system1. A Sr2CuO3 + KClO3 diffusion couple3 processed at 60 kbar and 950 °C yielded the superconductor Sr3Cu2O5Cl at the 3% level adjacent to the oxidizer. In addition to the unexpected participation of chlorine from an ostensibly ‘inert’ oxidizer that is commonly used in high-pressure synthesis work, the sample was highly zoned owing to limited oxygen diffusion kinetics, and contained non-superconducting Sr2CuO3.2. These contamination and diffusion problems probably affected all previous high-pressure copper oxide diffusion-couple experiments. Scanning SQUID petrology has general applicability to heterogeneous samples and is capable of detecting magnetic or superconducting phases at concentrations of less than 1 p.p.m.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the sample region of the scanning SQUID microscope.
Figure 2: Magnetization versus temperature after zero-field cooling for the product of the Sr2CuO3 + 0.05 KClO3 diffusion-couple experiment at 60 kbar and 950 °C for 3 h.
Figure 3: Optical and scanning SQUID micrographs of identical fields of view of a polished section through a diffusion-couple experiment processed at 60 kbar and 950 °C for 3 h.

Similar content being viewed by others

References

  1. Yamauchi, H., Karppinen, M. & Tanaka, S. Homologous series of layered cuprates. Physica C 263, 146–150 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Kirtley, J. R. et al. Design and applications of a scanning SQUID microscope. IBM J. Res. Dev. 39, 655–668 (1995).

    Article  CAS  Google Scholar 

  3. Hiroi, Z., Takano, M., Azuma, M. & Takeda, Y. Anew family of copper oxide superconductors Srn+1CunO2n+1+δstabilized at high pressure. Nature 364, 315–317 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Takano, M., Takeda, Y., Okada, H., Miyamoto, M. & Kusaka, T. ACuO2(A: Alkaline earth) crystallizing in a layered structure. Physica C 159, 375–378 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Takano, M., Azuma, M., Hiroi, Z., Bando, Y. & Takeda, Y. Superconductivity in the Ba-Sr-Cu-O system. Physica C 176, 441–444 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Hiroi, Z., Takano, M., Azuma, M., Takeda, Y. & Bando, Y. Anew superconducting cupric oxide found in the Sr-Cu-O system. Physica C 185–189;, 523–524 (1991).

    Article  ADS  Google Scholar 

  7. Azuma, M., Hiroi, Z., Takano, M., Bando, Y. & Takeda, Y. Superconductivity at 110 K in the infinite-layer compound (Sr1−xCax)1−yCuO2. Nature 356, 775–776 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Hiroi, Z., Azuma, M., Takano, M. & Takeda, Y. Structure and superconductivity of the infinite-layer compound (Ca1−ySry)1−xCuO2−z. Physica C 208, 286–296 (1993).

    Article  ADS  Google Scholar 

  9. Adachi, S., Yamauchi, H., Tanaka, S. & Môri, N. New superconducting cuprates in the Sr-Ca-Cu-O system. Physica C 212, 164–168 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Adachi, S., Yamauchi, H., Tanaka, S. & Môri, N. High-pressure synthesis of superconducting Sr-Ca-Cu-O samples. Physica C 202, 226–230 (1993).

    Article  ADS  Google Scholar 

  11. Zhou, X. et al. Structural and superconducting properties of the infinite-layer (Sr, Ca)1−yCuO2prepared under high pressure. Physica C 233, 30–36 (1994).

    Article  ADS  Google Scholar 

  12. Zhou, X. et al. Structure and superconductivity in the infinite-layer Sr1−xCuO2system prepared under high pressure. Physica C 233, 311–320 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Chateau, C., Clerc, F. & Suryanarayanan, R. Preparation, structural and superconducting properties of (Ba, Sr, Ca)1−yCuO2+zobtained under high pressure. Physica C 220, 127–130 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Zhang, H. et al. Identity of planar defects in the ‘infinite-layer’ copper oxide superconductor. Nature 370, 352–354 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Prouteau, C., Strobel, P., Capponi, J. J., Chaillout, C. & Tholence, J. L. Optimization of superconductivity in the high-pressure Sr-Ca-Cu-O system. Physica C 228, 63–72 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Shaked, H. et al. Superconductivity in the Sr-Ca-Cu-O system and the phase with infinite-layer structure. Phys. Rev. B 51, 111784–11790 (1995).

    Google Scholar 

  17. Shimakawa, Y. et al. Structural study of Sr2CuO3+δby neutron powder diffraction. Physica C 228, 73–80 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Wang, Y. Y. et al. ATEM study of the incommensurate modulated structure in Sr2CuO3+δsuperconductor synthesized under high pressure A. Evolution of the incommensurate modulated structure and the electronic structure with post-heat treatment. Physica C 225, 247–256 (1995).

    Article  ADS  Google Scholar 

  19. Zhang, H. et al. ATEM study of the incommensurate modulated structure in Sr2CuO3+xsuperconductors synthesized under high pressure B. Structural model. Physica C 225, 257–265 (1995).

    Article  ADS  Google Scholar 

  20. Ami, T. et al. Aneutron and synchrotron X-ray scattering study of Sr2CuO3+δsynthesized under moderate pressure: a new compound related to superconducting Sr2CuO3.1. Physica C 235–240;1003–1004 (1994).

    Article  ADS  Google Scholar 

  21. Laffez, P., Wu, X. J., Adachi, S., Yamauchi, H. & Môri, N. Synthesis of superconducting Sr2CuO3+δusing high-pressure techniques. Physica A 222, 303–309 (1994).

    Article  CAS  Google Scholar 

  22. Mitchell, J. F., Hinks, D. G. & Wagner, J. L. Low-pressure synthesis of tetragonal Sr2CuO3+xfrom a single-source hydroxometallate precursor. Physica C 227, 279–284 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Han, P. D., Chang, L. & Payne, D. A. High-pressure synthesis of the Sr2CuO3+δsuperconductor. Observation of an increase in Tcfrom 70 K to 94 K with heat treatment. Physica C 228, 129–136 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Hodges, J. P. et al. Observation of superconductivity (Tc= 50 K) in a new tetragonal alkaline-earth cuprate Sr0.8Ba1.2CuO3+δ, synthesised at ambient pressure. Physica C 260, 249–256 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Kawashima, T. & Takayama-Muromachi, E. Superconductivity in the series of compounds Sr2Can−1CunOy(n = 14) prepared under high pressure. Physica C 267, 106–112 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Smith, M. G., Manthiram, A., Zhou, J., Goodenough, J. B. & Markert, J. T. Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1−yNdyCuO2. Nature 35, 549–551 (1991).

    Article  ADS  Google Scholar 

  27. Cobb, J. L., Morosoff, A., Stuk, L. & Markert, J. T. Electron-doped infinite-layer Sr1−xLnxCuO2superconductors: Synthesis, magnetism, and transport. Physica B 194–;196;2247–2248 (1994).

    Article  Google Scholar 

  28. Kirtley, J. R. et al. High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66, 1138–1140 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Kirtley, J. R. Imaging magnetic fields. IEEE Spectrum 33, 40–48 (1996).

    Article  Google Scholar 

  30. Yang, Y., Scott, B. A., Chen, B.-H. & Walker, D. The role of contamination in Sr-Cu-O reactions at high pressure. Physica C 275, 52–64 (1997).

    Article  ADS  Google Scholar 

  31. Walker, D., Carpenter, M. A. & Hitch, C. M. Some simplifications to multianvil devices for high pressure experiments. Am. Mineral. 75, 1020–1028 (1990).

    Google Scholar 

  32. Walker, D. Lubrication, gasketing, and precision in multianvil experiments. Am. Mineral. 76, 1092–1100 (1991).

    Google Scholar 

  33. Jin, C.-Q. et al. Superconductivity at 80 K in (Sr, Ca)3Cu2O4+δCl2−y. Nature 275, 301–303 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Mitzi for use of the magnetometer. Work at the Lamont-Doherty Earth Observatory of Colombia University was funded by the National Science Foundation. Research at the IBM T. J. Watson Research Centre was partially supported by the Electric Power Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, B., Kirtley, J., Walker, D. et al. Application of scanning SQUID petrology to high-pressure materials science. Nature 389, 164–167 (1997). https://doi.org/10.1038/38249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38249

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing