Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GDNF signalling through the Ret receptor tyrosine kinase

Abstract

MUTATIONAL analysis in humans and mice has demonstrated that Ret, the product of the c-ret proto-oncogene, a member of the receptor tyrosine kinase (RTK) superfamily1, is essential for development of the enteric nervous system and kidney2–6. Despite the established role of Ret in mammalian embryogenesis, its cognate ligand(s) is currently unknown. Here we demonstrate, by using a Xenopus embryo bioassay, that glial-cell-line-derived neurotrophic factor (GDNF)7, a distant member of the transforming growth factor(TGF)-β superfamily, signals through the Ret RTK. Furthermore, using explant cultures from wild-type and Ret-deficient mouse embryos4, we show that normal c-ret function is necessary for GDNF signalling in the peripheral nervous system. Our data strongly suggest that Ret is a functional receptor for GDNF, and that GDNF, in addition to its potential role in the differentiation and survival of central nervous system neurons8–12, has profound effects on kidney organogenesis and the development of the peripheral nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takahashi, M. et al. Oncogene 3, 571–578 (1988).

    CAS  Google Scholar 

  2. Romeo, G. et al. Nature 367, 377–378 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Edery, P. et al. Nature 367, 378–380 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Schuchardt, A., D'Agati, V., Larsson Blomberg, L., Costantini, F. & Pachnis, V. Nature 367, 380–383 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Durbec, P. L., Larsson Blomberg, L., Schuchardt, A., Costantini, F. & Pachnis, V. Development 122, 349–358 (1996).

    CAS  PubMed  Google Scholar 

  6. Schuchardt, A., D'Agati, V., Pachnis, V. & Costantini, F. Development 122, 1919–1929 (1996).

    CAS  PubMed  Google Scholar 

  7. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. Science 260, 1130–1132 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Beck, K. D. et al. Nature 373, 339–341 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Tomac, A. et al. Nature 373, 335–339 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Henderson, C. E. et al. Science 266, 1062–1064 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Oppenheim, R. W. et al. Nature 373, 344–346 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Yan, Q., Matheson, C. & Lopez, O. T. Nature 373, 341–344 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Umbhauer, M., Marshall, C. J., Mason, C. S., Old, R. W. & Smith, J. C. Nature 376, 58–62 (1995).

    Article  ADS  CAS  Google Scholar 

  14. LaBonne, C., Burke, B. & Whitman, M. Development 121, 1475–1486 (1995).

    CAS  PubMed  Google Scholar 

  15. Gotoh, Y., Masuyama, N., Suzuki, A., Ueno, N. & Nishida, E. EMBO J. 14, 2491–2498 (1995).

    Article  CAS  Google Scholar 

  16. van der Geer, P., Hunter, T. & Lindberg, R. A. A. Rev. Cell Biol. 10, 251–337 (1994).

    Article  CAS  Google Scholar 

  17. Santoro, M. et al. Science 267, 381–383 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Borrello, M. G., Smith, D. P. & Pasini, B. Oncogene 11, 2419–2427 (1995).

    CAS  PubMed  Google Scholar 

  19. Smith, J. C., Price, B. M., Green, J. B., Weigel, D. & Herrmann, B. G. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  20. Hellmich, H. L., Kos, L., Cho, E. S., Mahon, K. A. & Zimmer, A. Mech. Dev. 54, 95–105 (1996).

    Article  CAS  Google Scholar 

  21. Suvanto, P. et al. Eur. J. Neurosci. 8, 816–822 (1996).

    Article  CAS  Google Scholar 

  22. Gilardi Hebenstreit, P. et al. Oncogene 7, 2499–2506 (1992).

    CAS  PubMed  Google Scholar 

  23. Saxen, L. Organogenesis of the Kidney (Cambridge Univ. Press, Cambridge, 1987).

    Book  Google Scholar 

  24. Pachnis, V., Mankoo, B. & Costantini, F. Development 119, 1005–1017 (1993).

    CAS  PubMed  Google Scholar 

  25. Sainio, K. et al. Int J. dev. Biol. 38, 77–84 (1994).

    CAS  PubMed  Google Scholar 

  26. Trupp, M. et al. J. Cell Biol. 130, 137–148 (1995).

    Article  CAS  Google Scholar 

  27. Hemmati Brivanlou, A., Kelly, O. G. & Melton, D. A. Cell 77, 283–295 (1994).

    Article  CAS  Google Scholar 

  28. Takahashi, M. et al. Oncogene 8, 2925–2929 (1993).

    CAS  PubMed  Google Scholar 

  29. Rathjen, F. & Schachner, M. EMBO J. 3, 1–10 (1984).

    Article  CAS  Google Scholar 

  30. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durbec, P., Marcos-Gutierrez, C., Kilkenny, C. et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 381, 789–793 (1996). https://doi.org/10.1038/381789a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381789a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing