Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant oxygen isotope shift in the magnetoresistive perovskite La1–xCaxMnO3+y

Abstract

FERROMAGNETIC perovskites of the form La1–XMexMnO3–Y (where Me is Ca or Sr) have been known1 since 1950, but there has been a recent resurgence of interest following the discovery of giant magnetoresistance in this class of compounds2,3. The compounds contain both Mn3+ and Mn4+ ions; as the electronic ground state of the Mn3+ ions is degenerate, their energy is lowered by a spontaneous distortion of the surrounding lattice—the Jahn–Teller effect4. The charge carriers in these materials are strongly coupled to (and mediate the ferromagnetic interaction between) the manganese ions5, suggesting that localized lattice distortions could also play an important role in determining the electronic and magnetic properties of these compounds. Here we investigate this possibility by examining the effect on the ferromagnetic transition temperature of varying the oxygen isotope mass (replacing 16O with 18O). For La0.8Ca0.2MnO3+y, we measure an isotope shift of >20 K, significantly larger than that found for any magnetic or electronic phase transition in other oxides. In contrast, we observe no significant isotope shift for the structurally related ferromagnet SrRuO3, in which the Jahn–Teller effect is negligible. These results imply that the large isotope shift arises from coupling of the charge carriers to Jahn–Teller lattice distortions, and we suggest that such Jahn–Teller 'polarons' may also be responsible for the magnetoresistive properties of these materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jin, S. et al. Science 264, 413–415 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Jonker, G. H. & Van Santen, J. H. Physica 16, 337–349 (1950).

    Article  ADS  CAS  Google Scholar 

  3. Chahara, K. et al. Appl. Phys. Lett. 63, 1990–1992 (1993). (see note below)

    Article  ADS  CAS  Google Scholar 

  4. Jahn, H. A. & Teller, E. Proc. R. Soc. Lond. A 161, 220–235 (1937).

    ADS  CAS  Google Scholar 

  5. Anderson, P. W. & Hasegawa, H. Phys. Rev. 100, 675–681 (1955).

    Article  ADS  CAS  Google Scholar 

  6. Höck, K.-H., Nickisch, H. & Thomas, H. Helv. phys. Acta 50, 237–243 (1983).

    Google Scholar 

  7. Alexandrov, A. S. & Mott, N. F. Int. J. mod. Phys. B8, 2075–2109 (1994).

    Article  ADS  CAS  Google Scholar 

  8. De Jongh, L. J. Physica C152, 171–216 (1988).

    Article  CAS  Google Scholar 

  9. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Shikano, M. et al. Solid St. Commun. 90, 115–119 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Zech, D. et al. Nature 371, 681–683 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Schiffer, P. et al. Phys. Rev. Lett. 75, 3336–3339 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Zhao, G. M. et al. Phys. Rev. B52, 6840–6844 (1995).

    Article  MathSciNet  CAS  Google Scholar 

  14. Shannon, R. D. Acta crystallogr. A32, 751–767 (1976).

    Article  Google Scholar 

  15. Hwang, H. Y. et al. Phys. Rev. Lett. 75, 914–917 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Goodenough, J. B. Phys. Rev. 106, 564–573 (1955).

    Article  ADS  Google Scholar 

  17. Röder, H., Zhang, J. & Bishop, A. R. Phys. Rev. Lett. 76, 1356–1359 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Gm., Conder, K., Keller, H. et al. Giant oxygen isotope shift in the magnetoresistive perovskite La1–xCaxMnO3+y. Nature 381, 676–678 (1996). https://doi.org/10.1038/381676a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381676a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing