Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photochemical release of biologically available nitrogen from aquatic dissolved organic matter

Abstract

DISSOLVED organic material in marine and freshwater ecosystems constitutes one of the Earth's largest actively cycled reservoirs for organic matter1. The bacterially mediated turnover of chemically identifiable, low-molecular-mass components of this pool has been studied in detail for nearly three decades, but these compounds constitute less than 20% of the total reservoir2. In contrast, little is known about the fate of the larger, biologically more refractory molecules—including humic substances—which make up the bulk of dissolved organic matter. Here we report results from bacterial bioassays and photochemical studies indicating that exposure to sunlight causes dissolved organic matter to release nitrogen-rich compounds that are biologically available, thus enhancing the bacterial degradation of humic substances. We demonstrate that ammonium is among the nitrogenous compounds released and is produced most efficiently by ultraviolet wavelengths. Photochemical release of ammonium from dissolved organic matter has important implications for nitrogen availability in many aquatic ecosystems, including nitrogen-limited high-latitude environments and coastal oceans, where inputs of terrestrial humic substances are high.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hedges, J. I. Mar. Chem. 39, 67–93 (1992).

    Article  CAS  Google Scholar 

  2. Thurman, E. M. Organic Geochemistry of Natural Waters (Junk, Boston, 1985).

    Book  Google Scholar 

  3. Moran, M. A. & Hodson, R. E. Limnol. Oceanogr. 35, 1744–1756 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Tranvik, L. J. Appl. envir. Microbiol. 56, 1572–1677 (1990).

    Google Scholar 

  5. Kieber, D. J., McDaniel, J. & Mopper, K. Nature 341, 637–639 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Valentine, R. & Zepp, R. G. Envir. Sci. Technol. 27, 409–412 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Miller, W. L. & Zepp, R. G. Geophys. Res. Lett. 22, 417–420 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Lindell, M. J., Granéli, W. & Tranvik, L. J. Limnol. Oceanogr. 40, 195–199 (1995).

    Article  ADS  Google Scholar 

  9. Wetzel, R. G., Hatcher, P. G. & Bianchi, T. S. Limnol. Oceanogr. 40, 1369–1380 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Miller, W. L., Zepp, R. G., Moran, M. A., Sheppard, E. S. & Hodson, R. E. Eos 75, 327 (1994).

    Google Scholar 

  11. Rice, D. L. Mar. Ecol. Prog. Ser. 9, 153–162 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Valiela, I. & Teal, J. M. Nature 280, 652–656 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Caron, D. A., Goldman, J. C. & Dennett, M. R. Hydrobiologia 159, 27–40 (1988).

    Article  Google Scholar 

  14. Bourbonnière, R. A. Org. Geochem. 14, 97–107 (1989).

    Article  Google Scholar 

  15. Schnitzer, M. in Humic Substances in Soil, Sediment, and Water (eds Aiken, G. R., McKnight, D. M., Wershaw, R. L & MacCarthy, P.) 303–325 (Wiley, New York, 1985).

    Google Scholar 

  16. Stevenson, F. J. Humus Chemistry (Wiley, New York, 1994).

    Google Scholar 

  17. Cohen, S. G. & Ojanpera, S. J. Am. chem. Soc. 97, 5633–5634 (1975).

    Article  CAS  Google Scholar 

  18. Amador, J. A., Alexander, M. & Zika, R. G. Appl. Envir. Microbiol. 55, 2843–2849 (1989).

    CAS  Google Scholar 

  19. Pastor, J. & Mladenoff, D. J. in A Systems Analysis of the Global Boreal Forest (eds Shugart, H. H., Leemans, R. Boman, G. B.) 216–240 (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  20. Alberts, J. J. & Filip, Z. Trends Chem. Geol. 1, 143–162 (1994).

    Google Scholar 

  21. Stokes, W. R., Hale, T. W., Pearman, J. L. & Buell, G. G. Water Resources Data Georgia US Geological Survey Water-Data Reports GA-85-1 (1986); GA-87-1 (1988); GA-90-1 (1991); GA-92-1 (1992).

  22. Moran, M. A. & Hodson, R. E. Limnol. Oceanogr. 39, 762–771 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Bishop, S. S., Emmanuele, K. A. & Yoder, J. A. Estuaries 7, 506–512 (1984).

    Article  Google Scholar 

  24. Verity, P. G. et al. Cont. Shelf Res. 13, 741–776 (1993).

    Article  ADS  Google Scholar 

  25. Carlsson, P., Segatto, A. Z. & Granéli, E. Mar. Ecol. Prog. Ser. 97, 105–116 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Meybeck, M. Am. J. Sci. 282, 401–450 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A. & Schnoor, J. L. Global biogeochem. Cycles 9, 235–252 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Krol, J., Alden, P. G., Morawski, J. & Jackson, P. E. J. Chromat. 626, 165–170 (1992).

    Article  CAS  Google Scholar 

  29. Grasshoff, K., Ehrhardt, E. & Kremling, K. Methods of Seawater Analysis (Verlag Chemie, Weinheim, 1983).

    Google Scholar 

  30. Zepp, R. G. & Cline, D. M. Environ. Sci. Technol. 11, 359–366 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Yoder, J. A. in Oceanography of the Southeastern US Continental Shelf (eds Atkinson, L. P., Menzel, D. W. & Bush, K. A.) 93–103 (Am. Geophys. Union, Washington DC, 1985).

    Book  Google Scholar 

  32. Atkinson, L. P., Blanton, J. O. & Haines, E. B. Estuar. Coastal Mar. Sci. 7, 464–472 (1978).

    Article  ADS  Google Scholar 

  33. Smith, D. C. & Azam, F. Mar. Microb. Food Webs 6, 107–114 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushaw, K., Zepp, R., Tarr, M. et al. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381, 404–407 (1996). https://doi.org/10.1038/381404a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381404a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing