Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient integration of an intron RNA into double-stranded DNA by reverse splicing

Abstract

SOME group II introns are mobile elements as well as catalytic RNAs1,2. Introns aI1 and aI2 found in the gene COX1 in yeast mitochondria encode reverse transcriptases which promote site-specific insertion of the intron into intronless alleles ('homing')3–6. For aI2 this predominantly occurs by reverse transcription of unspliced precursor RNA at a break in double-strand DNA made by an endonuclease encoded by the intron7. The aI2 endonuclease involves both the excised intron RNA, which cleaves the DNA's sense strand by partial reverse splicing; and the intron-encoded reverse transcriptase which cleaves the antisense strand8. Here we show that aI1 encodes an analogous endonuclease specific for a different target site compatible with the different exon-binding sequences of the intron RNA. Over half of aI1 undergoes complete reverse splicing in vitro, thus integrating linear intron RNA directly into the DNA. This unprecedented reaction has implications for both intron mobility and evolution, and potential genetic engineering applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lambowitz, A. M. & Belfort, M. A. Rev. Biochem. 62, 587–622 (1993).

    Article  CAS  Google Scholar 

  2. Michel, F. & Ferat, J.-L. A. Rev. Biochem. 64, 435–461 (1995).

    Article  CAS  Google Scholar 

  3. Meunier, B., Tian, G.-L., Macadre, C., Slonimski, P. P. & Lazowska, J. in Structure, Function and Biogenesis of Energy Transfer Systems (eds Quagliariello, E., Papa, S., Palmieri, F. & Saccone, C.) 169–174 (Elsevier Scientific, Amsterdam, 1990).

    Google Scholar 

  4. Kennell, J. C., Moran, J. V., Perlman, P. S., Butow, R. A. & Lambowitz, A. M. Cell 73, 133–146 (1993).

    Article  CAS  Google Scholar 

  5. Lazowska, J., Meunier, B. & Macadre, C. EMBO J. 13, 4963–4972 (1994).

    Article  CAS  Google Scholar 

  6. Moran, J. V. et al. Molec. cell. Biol. 15, 2828–2838 (1995).

    Article  CAS  Google Scholar 

  7. Zimmerly, S., Guo, H., Perlman, P. S. & Lambowitz, A. M. Cell 82, 545–554 (1995).

    Article  CAS  Google Scholar 

  8. Zimmerly, S. et al. Cell 83, 529–538 (1995).

    Article  CAS  Google Scholar 

  9. Moran, J. V. et al. Nucleic Acids Res. 22, 2057–2064 (1994).

    Article  CAS  Google Scholar 

  10. Herschlag, D. & Cech, T, R. Nature 344, 405–409 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Robertson, D. L. & Joyce, G. F. Nature 344, 467–468 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Mörl, M., Niemer, I. & Schmelzer, C. Cell 70, 803–810 (1992).

    Article  Google Scholar 

  13. Mörl, M. & Schmelzer, C. Cell 60, 629–636 (1990).

    Article  Google Scholar 

  14. Mörl, M. & Schmelzer, C. Nucleic Acids Res. 18, 6545–6551 (1990).

    Article  Google Scholar 

  15. Mueller, M. W., Allmaier, M., Eskes, R. & Schweyen, R. J. Nature 366, 174–176 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  17. Hebbar, S. K., Belcher, S. M. & Perlman, P. S. Nucleic Acids Res. 20, 1747–1754 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zimmerly, S., Perlman, P. et al. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381, 332–335 (1996). https://doi.org/10.1038/381332a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381332a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing