Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain

Abstract

EARLY during its development, the vertebrate brain is subdivided into regions that have distinct fates and correlate with the expression domains of regulatory genes1,2, but little is known about the cell–cell interactions that establish this spatial pattern. Candidates for regulating such interactions are the Eph-related receptor tyrosine kinases (RTKs) which have spatially restricted expression in the developing brain2–6. These RTKs may mediate cell-contact-dependent signalling by interacting with membrane-bound ligands7, and have been implicated in axon repulsion8,9 and the segmental restriction of gene expression in the hindbrain10, but nothing is known regarding their function in the rostral neural epithelium. Here we use a dominant-negative approach in the zebrafish embryo to interfere with the function of Rtk1, an Eph-related RTK expressed in the developing diencephalon. We find that expression of a truncated receptor leads to expansion of the eye field into diencephalic territory and loss of diencephalic structures, indicating a role for Rtk1 in patterning the developing forebrain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rubenstein, J. L. R. & Puelles, L. in Current Topics in Developmental Biology Vol. 29 (ed. Pedersen, R. A.) 1–63 (Academic, London, 1994).

    Google Scholar 

  2. Macdonald, R. et al. Neuron 13, 1039–1053 (1994).

    Article  CAS  Google Scholar 

  3. van der Geer, P., Hunter, T. & Lindberg, R. A. A. Rev. Cell Biol. 10, 251–337 (1994).

    Article  CAS  Google Scholar 

  4. Lai, C. & Lemke, G. Neuron 6, 691–704 (1991).

    Article  CAS  Google Scholar 

  5. Pasquale, E. B. et al. J. Neurosci. 12, 3956–3967 (1992).

    Article  CAS  Google Scholar 

  6. Nieto, M. A. et al. Development 116, 1137–1150 (1992).

    CAS  Google Scholar 

  7. Pandey, A., Lindberg, R. A. & Dixit, V. M. Curr. Biol. 5, 986–989 (1995).

    Article  CAS  Google Scholar 

  8. Cheng, H.-J. et al. Cell 82, 371–381 (1995).

    Article  CAS  Google Scholar 

  9. Drescher, U. et al. Cell 82, 359–370 (1995).

    Article  CAS  Google Scholar 

  10. Xu, Q. et al. Development 121, 4005–4016 (1995).

    CAS  Google Scholar 

  11. Irving, C. et al. Devl Biol. 173, 26–38 (1996).

    Article  CAS  Google Scholar 

  12. Xu, Q. et al. Development 120, 287–299 (1994).

    CAS  PubMed  Google Scholar 

  13. Hemmati-Brivanlou, A. & Melton, D. A. Nature 359, 609–614 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Graff, J. M. et al. Cell 79, 169–179 (1994).

    Article  CAS  Google Scholar 

  15. Amaya, E., Musci, T. J. & Kirschner, M. W. Cell 66, 256–270 (1991).

    Article  Google Scholar 

  16. Schmitt, E. A. & Dowling, J. E. J. comp. Neurol. 344, 532–542 (1994).

    Article  CAS  Google Scholar 

  17. Allende, M. L. & Weinberg, E. S. Devl Biol. 166, 509–530 (1994).

    Article  CAS  Google Scholar 

  18. Krauss, S. et al. EMBO J. 10, 3609–3619 (1991).

    Article  CAS  Google Scholar 

  19. Figdor, M. C. & Stern, C. D. Nature 363, 630–634 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Papalopulu, N. Perspect. dev. Neurobiol. 3, 39–52 (1995).

    CAS  PubMed  Google Scholar 

  21. Chung, S. H. & Cooke, J. Nature 258, 126–132 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Nakamura, H. et al. Cell Diff. Dev. 19, 187–193 (1986).

    Article  CAS  Google Scholar 

  23. Alvarado-Mallart, R., Martinez, S. & Lance-Jones, C. Devl Biol. 139, 75–88 (1990).

    Article  CAS  Google Scholar 

  24. Martinez, S., Wassef, M. & Alvarado-Mallart, R. M. Neuron 6, 971–981 (1991).

    Article  CAS  Google Scholar 

  25. Woo, K. & Fraser, S. E. Development 121, 2595–2609 (1995).

    CAS  PubMed  Google Scholar 

  26. Cheng, H.-J. & Flanagan, J. G. Cell 79, 157–168 (1994).

    Article  CAS  Google Scholar 

  27. Bergemann, A. D. et al. Molec. cell. Biol. 15, 4921–4929 (1995).

    Article  CAS  Google Scholar 

  28. Macdonald, R. et al. Development 121, 3267–3277 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Alldus, G., Macdonald, R. et al. Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain. Nature 381, 319–322 (1996). https://doi.org/10.1038/381319a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381319a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing