Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of nonlinear dynamics in short, noisy time series

Abstract

THE accurate identification of deterministic dynamics in an experimentally obtained time series1–5 can lead to new insights regarding underlying physical processes, or enable prediction, at least on short timescales. But deterministic chaos arising from a nonlinear dynamical system can easily be mistaken for random noise6–8. Available methods to distinguish deterministic chaos from noise can be quite effective, but their performance depends on the availability of long data sets, and is severely degraded by measurement noise. Moreover, such methods are often incapable of detecting chaos in the presence of strong periodicity, which tends to hide underlying fractal structures9. Here we present a computational procedure, based on a comparison of the prediction power of linear and nonlinear models of the Volterra–Wiener form10, which is capable of robust and highly sensitive statistical detection of deterministic dynamics, including chaotic dynamics, in experimental time series. This method is superior to other techniques1–6,11,12 when applied to short time series, either continuous or discrete, even when heavily contaminated with noise, or in the presence of strong periodicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sugihara, G. & May, R. M. Nature 344, 734–741 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Casdagli, M. Physica D35, 335–356 (1989).

    MathSciNet  Google Scholar 

  3. Kennel, M. B. & Isabelle, S. Phys. Rev. A46, 3111–3118 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer, J. D. Physica D58, 77–94 (1992).

    Google Scholar 

  5. Kaplan, D. T. & Glass, L. Physica D64, 431–454 (1993).

    Google Scholar 

  6. Grassberger, P. & Procaccia, I. Physica D9, 189–208 (1983).

    MathSciNet  Google Scholar 

  7. Osborne, A. R. & Provenzale, A. Physica D35, 357–381 (1989).

    MathSciNet  Google Scholar 

  8. Weigend, A. S. & Gershenfeld, N. A. (eds) Time Series Prediction (Santa Fe Inst. Studies in the Sciences of Complexity, Vol. XV, Addison-Wesley, Reading, MA, 1994).

  9. Cazelles, B. & Ferriere, R. H. Nature 355, 25–26 (1992).

    Article  ADS  Google Scholar 

  10. Marmarelis, V. Z. (ed.) Advanced Methods of Physiological System Modeling Vol. II (Plenum, New York, 1988).

  11. Grassberger, P. & Procaccia, I. Phys. Rev. A28, 2591–2593 (1983).

    Article  ADS  Google Scholar 

  12. Sano, M. & Sawada, Y. Phys. Rev. Lett. 55, 1082–1085 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Wiener, N. Nonlinear Problems in Random Theory (Wiley, New York, 1958).

    MATH  Google Scholar 

  14. Korenberg, M. J. Ann. biomed. Eng. 16, 123–142 (1988).

    Article  CAS  Google Scholar 

  15. Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L. S.) 336–381 (Lecture Notes in Mathematics Vol. 898, Springer, Berlin, 1981).

    Google Scholar 

  16. Akaike, H. IEEE Trans. Auto. Control 19, 716–723 (1974).

    Article  ADS  Google Scholar 

  17. Fraser, A. M. & Swinney, H. L. Phys. Rev. A33, 1134–1140 (1986).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Glass, L. & Malta, C. P. J. theor. Biol. 145, 217–223 (1990).

    Article  CAS  Google Scholar 

  19. Crutchfield, J. P. & MacNamara, B. S. Complex Systems 1, 417–452 (1987).

    MathSciNet  Google Scholar 

  20. Hammel, S. M. Phys. Lett. A148, 421–428 (1990).

    Article  MathSciNet  Google Scholar 

  21. Grebogi, C., Ott, E., Pelikan, S. & Yorke, J. A. Physica D13, 261–268 (1984).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barahona, M., Poon, CS. Detection of nonlinear dynamics in short, noisy time series. Nature 381, 215–217 (1996). https://doi.org/10.1038/381215a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381215a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing