Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant magnetoresistance of manganese oxides with a layered perovskite structure

Abstract

MANGANESE oxides with the cubic perovskite structure (typified by LaMnO3) have stimulated considerable interest because of their magnetoresistive properties1–9; they exhibit extremely large changes in electrical resistance in response to applied magnetic fields, a property that is of technological relevance for the development of magnetic memory and switching devices. But for such applications to be viable, great improvements will be needed in both the sensitivity and temperature dependence of the magnetoresistive response. One approach under consideration for optimizing these properties is chemical substitution10. Here we demonstrate an alternative strategy, in which we synthesize layered variants of the cubic perovskite parent compounds that have a controlled number of MnO2 sheets per unit cell. This strategy is structurally analogous to that employed for the systematic exploration of the high-transition-temperature copper oxide superconductors11. We find that the magneto-resistive properties of these materials depend sensitively on the dimensionality of the manganese oxide lattice. Although the properties of our materials are still far from optimal, further exploration of this series of layered perovskites may prove fruitful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Helmont, R. et al. Phys. Rev. Lett. 71, 2332–2333 (1993).

    ADS  Google Scholar 

  2. Jin, S. et al. Science 264, 413–415 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Chahara, K., Ohno, T., Kasai, M. & Kozono, Y. Appl. Phys. Lett. 63, 1990–1992 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Ju, H. L., Kwon, C., Greene, R. L. & Venkatesan, T. Appl. Phys. Lett. 65, 2108–2112 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Kusters, R. M. et al. Physica B155, 362–365 (1989).

    Article  CAS  Google Scholar 

  6. Tokura, Y. et al. J. phys. Soc. Japan B63, 3931–3935 (1995).

    Article  ADS  Google Scholar 

  7. Urushibara, A. et al. Phys. Rev. B51, 14103–14109 (1995).

    Article  CAS  Google Scholar 

  8. Tomioka, Y. et al. Phys. Rev. Lett. 74, 5108–5111 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Kuwahara, H. et al. Science 270, 961–963 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Hwang, H. Y., Cheong, S.-W. Radaelli, P. G., Marezio, M. & Batlogg, B. Phys. Rev. Lett. 75, 914–917 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Rao, C. N. R. (ed.) Chemistry of High Temperature Superconductors (World Scientific, Singapore, 1991).

  12. Jonker, G. H. & Santen, J. H. Physica 16, 337–349 (1950).

    Article  ADS  CAS  Google Scholar 

  13. Zener, C. Phys. Rev. 82, 403–405 (1951).

    Article  ADS  CAS  Google Scholar 

  14. Anderson, P. W. & Hasegawa, H. Phys. Rev. 100, 675–681 (1955).

    Article  ADS  CAS  Google Scholar 

  15. Moritomo, Y., Tomioka, Y., Asamistu, A., Tokura, Y. & Matsui, Y. Phys. Rev. B51, 3297–3300 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Ram, R. A. M., Ganguly, P. & Rao, C. N. R. J. Solid St. Chem. 70, 82–87 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritomo, Y., Asamitsu, A., Kuwahara, H. et al. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996). https://doi.org/10.1038/380141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380141a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing