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Of the major issues that dermatopathology will face in the immediate future, two powerful challenges loom
large. The first is the application of novel nondestructive imaging technologies to in vivo diagnosis in humans.
The second is the application of molecular technologies to a diagnostic arena which formerly belonged
exclusively to the light microscopist. The first to be considered in this context is the application of near infrared
spectroscopy to the noninvasive in vivo diagnosis of neoplastic skin disease. The second will be a discussion
of application, methodology and the current state of the art in microarray technologies as they apply to
neoplastic dermatopathology and, in particular, the diagnosis and prognostication of melanoma.
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Noninvasive assessment of skin lesions
by near infrared (IR) spectroscopy

In the late 1990s, working with Dr Laura McIntosh
and colleagues at the National Research Council of
Canada, the University of Manitoba, Central Medical
Laboratories and the Misericordia General Hospital
in Winnipeg, Canada, we designed and patented a
noninvasive tool for the diagnosis of skin tumors
using visible and near IR spectroscopy in the 400–
2500nm size wavelength range.1–5 Initially, we
excised neoplasms, and processed them in the fresh
state with sections for formaldehyde fixation and
paraffin embedding matched to tissue elements snap
frozen in liquid nitrogen and stored at �801F. Thick
sections from the frozen tissue elements were
interrogated by mid-IR wavelength light (Figure 1).
The transmitted light generated significant spectral
differences; water, hemoglobin, cytochromes, lipids
and proteins all absorb light at specific frequencies
(Figure 2). In particular, the mid-IR range is rich
with information about proteins including in the
context of collagen and RNA. When analyzed by a
sophisticated leave-one-out hierarchical classifica-
tion algorithm, distinction between microanatomic
compartments of the skin could be made (Figure 3).
Using this methodology, we were able with an
accuracy of 90–95% to distinguish basal cell
carcinoma (BCC) from melanocytic nevi, seborrheic

keratoses and squamous cell carcinomata in vitro.
Melanocytic nevi could be subdivided into banal vs
dysplastic nevi based upon their spectral differences
and melanomas could be separately recognized as
well. Furthermore, the different types of lesion were
shown to have distinct mid-IR signatures when
compared to adjacent normal epidermal and dermal
compartments.

Unfortunately, the diagnostic potential of mid-IR
spectroscopy for in vivo applications is limited, as
complete absorption of mid-IR light occurs with
samples greater than 10–15 mm in thickness. In
contrast, near-IR light scatters to a much greater
extent than it absorbs and in consequence, tissues
are relatively transparent in the near-IR region
which permits the examination of larger tissue
volumes and led to the creation of an in vivo near-
IR device (Figure 4). Between 650 and 900nm
proved ideal and is called the ‘biological window’
for in vivo imaging because there is less absorption
in this spectral range. This in turn may partly reflect
the metabolic ‘activity’ and oxygenation status of the
tissue.

Near-IR light was brought from a spectrometer to
the skin via a fiberoptic cable (Figure 4). Light
penetrated the skin. As in the in vitro experiments,
water, hemoglobin, cytochromes, lipids and pro-
teins all absorb light at specific frequencies; the
remainder was scattered by the skin with some light
being back-scattered into the fiberoptic probe. The
light was collected by the probe and transmitted
back to the spectrometer for analysis and a plot of
the amount of light absorbed at each wavelength
was computed. The latter represents the near-IR
spectrum. These data could be measured rapidlyReceived 23 September 2005; accepted 28 September 2005
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with no tissue destruction and without the obtaining
of a biopsy sample at the time of interrogation. Thus,
this was an entirely noninvasive methodology.
Immediately, the tissue element under study was
biopsied or excised for pathological analysis. The
information generated by spectroscopic analysis
was analyzed statistically through paired T-tests to
identify significant differences between lesional and
control normal skin spectra. These P-values were
then plotted against wavelength and the mean
control spectrum then subtracted from each mean
lesion spectrum in a pair-wise fashion to demon-
strate differences between spectra. Based upon these

results a discrete number of wavelengths were
selected to perform repeated measured analysis of
variance (ANOVA) which suggested that the spectra
were highly reproducible. Multivariant statistics,
in particular Fisher’s least significant difference
showed various significant intergroup differences
between the types of lesion analyzed. Linear
discriminate analysis (LDA) using the ‘leave one
out’ crossvalidation strategy6 was applied to deter-
mine the likelihood of a spectrum belonging to each
class and spectra were then allocated to the class to

Figure 1 Mid-infrared spectroscopy system. For in vitro spectro-
scopic analysis, thick cryostat sections are placed in the spectro-
scopy specimen chamber (left). The territory of spectroscopic
analysis is controlled robotically and matched to a hematoxylin-
and eosin-stained frozen section placed on the microscope stage
(middle). A computer station (right) completes the assembly.

Figure 2 Spectrograph of frozen skin tissue. Proteins, phosphates,
carbohydrates and lipids all generate a different absorbance and
reflectance depending upon the wavelength of the incident light
from the mid-infrared spectrum.

Figure 3 Spectroscopic analysis of microanatomic components of
the skin. Although they appear similar to the naked human eye,
the computer can reliably distinguish the spectroscopic differ-
ences between epidermis, dermis, hair follicle sheath, stroma and
basal cell carcinoma.

Figure 4 In vivo device for near-infrared spectroscopy of skin
lesions. Through an afferent fiber optic device, near infrared
wavelength light is projected directly onto a target lesion on the
back of a man with multiple dysplastic nevi. The reflected light is
returned via an efferent fiber optic lead to the spectography
device and the spectra stored to the hard disk of a notepad
computer.
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which they fit most closely. Lesions studied by the
LDA methodology included: (1) Dysplastic vs banal
nevi; (2) Dysplastic nevi vs lentigines; (3) Actinic
keratoses vs lentigines; (4) Actinic keratoses vs
seborrheic keratoses; (5) BCC vs seborrheic kera-
toses; (6) BCC vs banal nevi; and, (7) Dysplastic nevi
vs seborrheic keratoses. The ability to separate
dysplastic from banal nevi was demonstrated at
the 97.7% level (vs a level of 89.6% by the
clinician).4,5 In contrast, the clinician was able to
distinguish dysplastic nevi from actinic lentigines
with 100% accuracy vs only 92.0% using the LDA
methodology. The most discrepant result was the
distinction of dysplastic nevi vs seborrheic kera-
toses, carried out with 100% accuracy by an
experienced clinician vs only 72.4% accuracy by
near-IR spectroscopy.

We demonstrated that near-IR spectroscopy may
form the basis of a clinical methodology to diagnose
skin lesions in a rapid, simple and noninvasive
fashion. Measurements proved accurate and repro-
ducible and the technology is noninvasive and
nondestructive. Further advances in the application
of near-IR spectroscopy to skin lesions may provide
complementary data to clinical examination and
histopathology.

Molecular adjuncts to diagnosis:
the microarray

The astonishing success of the Human Genome
Project in identifying over 25 000 structurally un-
ique genes distributed over 3.2 billion base pairs of
human DNA has generated a new level of activity
directed at unraveling the molecular basis of
neoplasia.7–9 Novel molecular methodologies are
now being employed which are complementary to
traditional microscopy of formalin-fixed tissue.

Immunohistochemical analysis performed on par-
affin-embedded tissue has since the early 1980s
been used to detect the protein products of gene
expression and thus to predict the malignant
phenotype or, more commonly, to confirm the
histogenesis of a particular neoplasm. Reverse
transcriptase polymerase chain reaction (RT-PCR)
methodologies detect mRNA in tissue to provide
similar and complementary information, but typi-
cally are employed to asses the expression of one, or
at most a few, genes at one time. A novel scientific
approach has evolved that employs microarray
technology to assess biomolecules in high-through-
put analytical systems. Those microarray techno-
logies currently utilized are broadly classified as
representing complementary DNA (cDNA) micro-
arrays, oligonucleotide arrays, protein microarrays
and tissue microarrays.10 The information derived
from cDNA microarray studies permits meta-analy-
sis of huge quantities of information, which can be
correlated mathematically for the extraction of the
maximum amount of scientific information.11 cDNA

is obtained from in vitro reverse transcription of
total RNA and reflects all of the genes in a tissue
sample save for the spliced introns (Figure 5). The
biological sample which is the target of microarray
analysis typically comprises 10–40 mg of high-qua-
lity RNA. Such a sample would be extracted from a
tissue element roughly 100mm3 in size (ie a 4mm
punch biopsy).12 In our experience, tissue samples
snap frozen in liquid nitrogen and then stored for 5
years at �801F proved noninformative due to RNA
degradation. It has proven far better to extract the
RNA from the tissue sample in the fresh state at
the bench immediately adjacent to the site where
the biopsy or excision is performed. There are, in
addition, commercial products designed to preserve
RNA for transport over a 24–48h period prior to
extraction. The purified RNA sample is then reverse
transcribed into cDNA to prepare for creation of the
microarray.

The cDNA microarray is a miniature display of
large numbers of DNA sequences on a solid support
system, either a microchip or a slide. The methodo-
logy employed to create a cDNA microarray involves
the generation of cDNA copies from mRNA, opti-
mally derived from fresh tumor samples, and
synthesized in vitro with fluorescent-labeled
nucleotides which are robotically hybridized into
the array. Thousands of unique cDNA probes can be
applied per square centimeter of slide or microchip
array (Figure 6). Glass is preferable as it enables the
use of small reaction volumes, permitting a greater
number of probes to be applied in a smaller space
with low autofluorescence, allowing the simulta-
neous application of paired fluorophores to a single
sample.13,14 Oligonucleotides of cDNA, typically
20–25 base pairs long, are spotted mechanically
onto a silane-coated slide or are synthesized
in loco.15

For analysis using a cDNA microarray it was
formerly imperative to employ specific sets of
tissue-appropriate cDNA probes generated from the
mRNA derived from relevant clones. For cells of
melanocyte lineage, the expressed sequenced tag
database (dbEST) for neural crest-derived melano-
cytic cDNA sets was created.16 The Stanford Uni-
versity microarray database lists, for example,
specific sets of tissue-appropriate cDNA for use in
various human cancers and is accessible through
their website (http://genome-www.stanford.edu/
microarray).17 In current applications, it is now
possible to assess gene expression on a genome-
wide scale in a single tissue sample, a process
referred to as structural genomics.18

Microarrays are analyzed using complex bio-
chemical–optical systems that employ analytical
computer technologies including neural nets and
hierarchical data analysis and processing to decode
the complex array of data generated.19 This techno-
logy provides for rapid identification of amplifica-
tion of genes.20 Amplification of expression can
be detected at a level of only five times above
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background. A single mRNA species can be detected
from among 500 000 different mRNAs. With respect
to genome-wide microarray, specific software per-
mits the measurement of expression and its inten-
sity vs control tissues (Figure 7) while other tools
utilize clustering algorithms to identify clusters of
genes with similar patterns of expression and/or
linked functions. In an unpublished study of BCC,
we analyzed five tumors and nearby normal control
skin from the same patients in order to identify
the upregulation of a group of genes that relate to
the actin filament/cell surface attachment plaque
assembly system, which is known to impact cell
motility (Figures 8 and 9). Cluster identification
software alerted us to the functional linkage
between several of these genes (Figure 10).

One group analyzed melanoma samples with an
array of 7000 discrete genes, and thereby identify a
distinct malignant melanoma subset capable of
producing primitive tubular networks in vivo that
correlate to aggressive biological behavior.21 The

Figure 5 Complementary DNA (cDNA) microarray. RNA is extracted from the neoplasm (in this case a basal cell carcinoma) and adjacent
normal tissue; from the RNA, cDNA is prepared by in vitro reverse transcription of the total RNA extracted from fresh tissue. The cDNA is
then hybridized robotically into a glass slide array with green and red fluorophores. These fluorophores are excited by fluorescent light
and the red and green wavelength emissions are captured and quantitated by an optical scanner.

Figure 6 At the Oklahoma Medical Research Foundation (OMRF)
are employed genome scale human chips with 21324 genes per
chip. Illustrated is an actual slide bearing cDNA from over 21000
human genes.
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authors proved that global transcript analysis could
be applied to malignant melanoma cell lines to
identify previously unrecognizable clonal subsets.
Su et al22 analyzed the expression of 3317 genes in
three different melanoma cell lines, analyzed in
pairs by cDNA microarray technology, to identify
specific tumor suppressor genes including the Cx43
suppressor gene, monocyte chemotactic protein-1
(suppressor) and the cystein proteinase P32-a gene
responsible for apoptosis. Transfection of the Cx43
gene from chromosome 6q21–23 suppressed ancho-
rage-independent growth of a melanoma cell line,
proving that the ability to alter cellular phenotype
in concert with global gene expression profiling
enabled the identification of previously unrecog-
nized tumor suppressor genes.22 Other groups
have used microarrays to analyze the gene expres-
sion profile of melanoma vs dysplastic nevi23

or to determine which genes are operative in
the transformation from localized to metastatic
melanoma.24–28 As expected, the progression from
radial to vertical growth phase is associated with
loss of cell cycle regulatory control. For example,
cyclin D1 is expressed in radial growth phase
melanoma and is lost in progression to vertical
growth phase neoplasms, while p16 (INK4A) and
p27 (KIP1) expression are diminished in advanced
melanoma.29 Another territory of interest is those
genes which determine the regulation of the
immune response to melanoma.30 Other novel genes

that have been detected that were not hitherto
implicated in melanomagenesis include WNT5A, a
proto-oncogene involved in cell motility;21 confir-
matory application of an antibody that inactivates
the wnt5a protein product, termed ‘Frizzled-5’,
arrests the effects of wnt5a.31 In addition to WNT5A,
other genes are implicated in the acquisition of cell
motility and angiogenesis.25,26,32–34 Hypoxia-induci-
ble genes such as Cyr61 have shown to be consti-
tutively upregulated in late stage melanoma.35

Complementary to cDNA microarray is the tissue
microarray. The latter involves the performance of a
core sample of a block of paraffin-embedded tissue
and relocation of the tissue core to an array block
which is then sectioned to generate 0.5–0.6mm
crosssections; hundreds of cores from different
neoplasms or tissues are then placed on a single
slide. This slide-based array is then analyzed with
conventional immunohistochemical reagents and is
thus in a sense analogous to the protein array
methodologies, at least from the standpoint of
detecting the protein products of gene expression
in tissue.36 This technology likely will prove amen-
able to application to cytologic preparations also.10

The tissue microarray can thus be used to confirm
the expression of genes in known samples of
formalin-fixed tumors.

Apoptotic pathways are an area of intense interest
in melanoma biology.37 Genome-wide scans may be
used to identify likely gene candidates for more

Figure 7 cDNA microarray: optical output. The height of the individual spikes of green or red fluorescence correspond to the differential
levels of gene transcription.
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intensive study. In a study of pathways of E2F-1-
induced apoptosis in melanoma, one group
screened 12 000 genes to identify those which are
upregulated in response to E2F-1, and found 452
genes linked to its overexpresion. Of these, changes
in expression of 17 genes was confirmed by real-
time PCR analysis.38 The mRNA product of a gene
linked to the X-linked apoptosis protein (XIAP),

termed XIAP factor I was shown to be significantly
downregulated in 15 of 16 melanoma lines evalu-
ated, and significantly reduced in tissue microarray
of 70 melanomas vs 40 melanocytic nevi.39

The main objective of microarray technology as
applied to dermatologic neoplasia is to classify
neoplasms based upon their molecular profile and
to define their biological capacity for metastasis. In
addition, the cDNA microarray can also be used to
establish the molecular pharmacology of a neo-
plasm, namely, how a given cancer metabolizes and
responds to a particular chemotherapeutic agent.40

Better understanding of a tumor’s signalling and
metabolic pathways could lead to the provision of
specific novel therapeutic targets not yet under-
stood.41,42 Specific vaccine strategies based upon
tumor-derived complementary RNA has been pro-
posed.43 These strategies may evolve into the
individualized therapy of patients following precise
definition of the molecular character of their
cancers.

The oligonucleotide microarray uses silicone
wafers similar to those employed in the computer
industry to precisely identify specific locations
and to effect the construction of unique oligo-
nucleotide sequences in a microscopic array. The
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Figure 8 Microarray data from five basal cell carcinomas (BCCs) showing upregulated gene transcription vs adjacent normal skin. Several
of these genes ie actin-beta, thymosin beta 10 and beta 4 and protein tyrosine kinase 2 (PTK2) all relate to the actin filaments and their
assembly into surface attachment plaques. Actin and the actin-attachment plaques are involved in cell motility. Transforming growth
factor beta-stimulated protein (TSG22) is upregulated 2.37 times in BCC as opposed to adjacent normal skin. Activation of the
smoothened signaling pathway in BCC is associated with upregulated transcription of TGF Beta (see Basal Cell Carcinoma: Biology,
Morphology and Clinical Implications elsewhere in this supplement). The COL 3A1 gene for collagen synthesis is upregulated by a factor
of 3.4:1 over the adjacent normal tissue and the secreted protein, acidic, rich in cystein (SPARC/osteonectin) gene is upregulated 3.1
times. The latter is involved in cell motility and cell adhesion.
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Figure 9 Microarray analysis of basal cell carcinoma. The same
data as in Figure 8 is shown in a tabulated form generated by the
computer software.

Future of dermatopathology
AN Crowson

S160

Modern Pathology (2006) 19, S155–S163



oligonucleotide array is best applied to the search
for specific genetic mutations, as a single microchip
employing a series of different oligonucleotide
sequences can explore for all known mutations of
a particular genetic sequence. Affymetrix Corpora-
tion (Santa Clara, CA, USA) markets a chip that
enables the exploration of every nucleotide of exons
2–11 of the p53 tumor suppressor gene through the
assay of 1262 base pairs via the redundant analysis
of each of four base pair possibilities at each
location.44 A second use for the oligonucleotide
microarray is that of biopharmacology, where anti-
cancer agent efficacy can be correlated to gene
expression in tissue.45,46

Complimentary to these novel genomic initiatives
is proteomics, the study of expressed proteins in
tissue and cell types.47 Both proteomic and other
tissue microarray studies are enhanced by the use of
laser capture microdissection which enables isola-
tion of critical neoplastic cells.48 Proteins are the
functional products of genes. They are modified by
post-translational events such as phosphorylation

or glycosylation as well as by environmental or
epigenetic factors which impact the aging cell.
Proteomic microarrays assay the functional state of
the protein products of genes identifiable by cDNA
genomic technology.

Conclusion

Combining proteomic and genomic investigation
provides a novel molecular diagnostic strategy for
melanoma and other skin neoplasms that will
presently lead to new therapeutic strategies. Con-
ventional clinical and histologic (ie morphological)
data will remain a necessary adjunct to guide these
novel strategies as they evolve.
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