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Intestinal metaplasia is a cancer precursor in the esophagus and the stomach. Marked differences exist
between the carcinogenic processes in the two locations in terms of natural history and clinical significance.
We investigated biopsies from 52 patients with Barrett’s esophagus and from 50 patients with gastric intestinal
metaplasia in an attempt to throw light on their pathogenic processes. Morphologic characteristics, presence of
Helicobacter pylori (H. pylori), and markers of differentiation, inflammation, and proliferation were evaluated by
histochemical and immunohistochemical techniques. The area covered by incomplete type of intestinal
metaplasia and the proportion of sulfomucins were significantly higher in the esophagus than in the stomach.
Immunoreactivity with MUC1, MUC2, MUC5AC, Das-1, cytokeratins 7 and 20, inducible nitric oxide synthase and
cyclooxygenase-2 antibodies was also significantly greater in Barrett’s esophagus than in gastric intestinal
metaplasia. In gastric intestinal metaplasia, the presence of MUC1, MUC5AC, Das-1 and cytokeratin 7 was
restricted to areas with the incomplete type of metaplasia. Cell proliferation (Ki-67) was significantly higher in
Barrett’s esophagus than in gastric intestinal metaplasia. H. pylori was absent in all of the patients with
Barrett’s esophagus, while it was present in 70% of the patients with gastric intestinal metaplasia. Our
observations made clear that Barrett’s esophagus shares some phenotypic characteristics with gastric
intestinal metaplasia, leading us to suggest that both could arise in response to injuries with eventual
carcinogenic potential. However, the progression to more advanced lesions could be modulated by the nature
of the carcinogenic insult.
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Gastric adenocarcinoma has decreased in incidence
and mortality in the USA, but it remains the second
most frequent cause of cancer deaths worldwide.1,2

In contrast, esophageal adenocarcinoma has re-
cently displayed a striking increase in incidence,
as reported in several countries, including the
USA.3–6 In the last decade, the incidence of
adenocarcinoma in the lower esophagus, probably
originating in Barrett’s esophagus, has exceeded that
of squamous cell carcinoma.4,5 According to a recent
cohort analyses, the increase in esophageal adeno-
carcinoma is not shared by gastric cardia adenocar-
cinoma.7

Barrett’s esophagus was originally described as
‘columnar lined esophagus’8,9 and three types
were recognized according to the epithelial cells
found: fundic-type, cardiac-type (junctional) and
specialized columnar epithelium.10 Currently, it
has been accepted that the diagnosis of Barrett’s
esophagus requires the presence of specialized
columnar epithelium with intestinal-type goblet
cells.11,12

Intestinal metaplasia has been widely recognized
as an associated risk factor and a probable precursor
of both esophageal and gastric adenocarcinoma,13–19

but little is known about its pathogenesis. Multiple
studies have shown changes in protein expression
patterns in intestinal metaplasia, as well as in
dysplasia and carcinoma in both esophagus and
stomach. They include, among others, mucins,
cytokeratins, and inflammatory enzymatic markers,
such as inducible nitric oxide synthase and cycloox-
ygenase-2.
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Mucins are large, heavily glycosylated proteins
present at the interface between many epithelia and
their extracellular environment.20,21 They are pro-
duced by epithelial cells and are the main compo-
nent of the gastrointestinal mucus gel layer. Normal
esophageal mucosa displays MUC1 in the squamous
epithelium, whereas MUC5B is expressed in the
submucosal glands.22–24 Normal gastric mucosa
expresses MUC1 and MUC5AC in the foveolar
epithelium, whereas MUC6 is expressed in the deep
glands.25,26 In Barrett’s esophagus, neoexpression
of gastric and intestinal mucins has been
found.22,24,27,28 In complete gastric intestinal meta-
plasia, neoexpression of the intestinal mucin MUC2
along with underexpression of normal gastric mu-
cins have been reported, while incomplete gastric
intestinal metaplasia has shown MUC1, MUC2 and
MUC5AC expression.25,29,30 Esophageal and gastric
adenocarcinomas have shown variable expression of
gastric and intestinal mucins.24,31,32

Das-1 is a monoclonal antibody (formerly called
7E12H12) that was developed against a 40 kDa
colonic epithelial protein.33 More recently, Das-1
antibody was found to specifically recognize a
4200 kDa colon epithelial protein that complexes
with the 40 kDa protein and acts as a chaperone to
bring the 40 kDa protein on colon epithelial sur-
face.34 Several studies have shown Das-1 immunor-
eactivity with Barrett’s metaplasia and Barrett’s
adenocarcinoma,35–37 as well as with gastric adeno-
carcinomas and carcinoma-associated intestinal me-
taplasia,38 but no reactivity has been found in
normal esophageal, gastric or small intestinal mu-
cosa.33,35

Cytokeratins, components of the cytoskeleton of
epithelial cells, are intermediate-sized filaments
that are expressed in different combinations.39,40

Cytokeratin 7 is considered a marker of ductal
differentiation, present in multiple normal tissues
but essentially absent from adult gastrointestinal
and squamous cell epithelia. However, it is ex-
pressed in adult esophageal submucosal glands and
ducts,41 and has been reported in fetal gastric
glandular tissue.42,43 Cytokeratin 20, in contrast to
cytokeratin 7, is expressed in normal foveolar
gastrointestinal epithelium in gastric, small intes-
tine and colonic mucosa.44

Recently, the pattern of expression of cytokeratins
7 and 20 in various preneoplastic and neoplastic
entities, including Barrett’s esophagus and intestinal
metaplasia of the stomach, has been the subject of
multiple studies.36,37,41,45–47 Controversial results
have been published, especially regarding intestinal
metaplasia in cardiac mucosa and gastroesophageal
junction.36,37,41,45,48

Inducible nitric oxide synthase and cyclooxygen-
ase-2 are enzymatic mediators of inflammation and
may be involved in epithelial cell growth.49 They are
the inducible isoforms of nitric oxide synthase and
cyclooxygenase, enzymes that regulate the produc-
tion of nitric oxide and prostanoids, respectively.

Both enzymes have shown increased expression in
several precancerous and cancerous processes in
esophageal and gastric mucosa.50–55

Increase in proliferative activity is considered
an early biological change in the carcinogenesis
sequence of events. Ki-67 is a nuclear protein
detectable in proliferating cells (late G1, S, G2, and
M phases) but absent in resting cells (G0 phase).56

Although its function is not completely known,57 its
expression has been considered as a reliable index
of proliferation. Increase in proliferation has been
observed in premalignant and malignant conditions
of the esophagus and the stomach.58–61

This report explores the morphologic and immu-
nophenotypic similarities and differences between
intestinal metaplasia in the esophagus and in the
stomach using histologic and immunohistochemical
techniques as markers of mucin protein types,
cytokeratins, inflammation and proliferation.

Materials and methods

Tissue Specimens and Histochemistry

A total of 102 adult patients attending gastroenter-
ology services at three hospitals in New Orleans
from 1991 to 2002 were enrolled in this comparative
study. Esophageal specimens from 52 patients
(including two resections) with Barrett’s esophagus
were obtained at Tulane University Medical Center
and at Veterans Affairs Medical Center. Selection of
patients with Barrett’s esophagus was based on
clinical and endoscopic criteria. Biopsies from the
cardia, gastroesophageal and squamocolumnar junc-
tions and tubular esophagus were obtained during
endoscopy in these patients; however, after review
of all the biopsies of each subject, only cases with
intestinal metaplasia proximal to the squamocolum-
nar junction were selected. Endoscopic gastric
biopsies from 50 patients with intestinal metaplasia
distal to the cardia (corpus and antrum) were
obtained at Louisiana State University Hospital.

Specimens were fixed in buffered 10% formalin
and embedded in paraffin. Serial 4mm-thick sec-
tions were cut from each paraffin block and
mounted on poly-L-lysine coated Probe-On slides
(Fisher Biotech) for histochemistry and immunohis-
tochemistry. Staining with hematoxylin and eosin
using standard techniques was performed.

Barrett’s esophagus was defined as histologic
evidence of intestinal metaplasia within the eso-
phagus, and characterized by presence of goblet
cells. Gastric intestinal metaplasia was defined as
presence of intestinal metaplasia within corpus or
antral mucosa. Cardiac intestinal metaplasia was not
included in our study. Presence of neutral, sialic and
sulfated mucins was evaluated with Alcian blue, pH
2.5/periodic acid-Schiff62 and with Alcian blue/
high-iron diamine63 stains. The presence of Helico-
bacter pylori (H. pylori) was assessed by modified
Steiner silver stain.64
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All the histochemical and immunochemical
stains were carried out simultaneously for all gastric
and esophageal tissues to assure identical reagents
dilution, timing and temperature.

Immunohistochemistry

Tissue sections from every paraffin block were
immunostained with antibodies for MUC1, MUC2,
MUC5AC, MUC6, cytokeratins 7 and 20, Das-1,
Ki67, inducible nitric oxide synthase and cycloox-
ygenase-2. Mucins and cytokeratins antibodies were
obtained from Novocastra (Burlingame, CA, USA),
Ki-67 (MIB-1) from Biocare Medical (Walnut Creek,
CA, USA), inducible nitric oxide synthase from
Zymed Laboratories (San Francisco, CA, USA) and
cyclooxygenase-2 from Cayman Chemical Co. (Ann
Arbor, MI, USA). Das-1 antibody was kindly pro-
vided by Dr Kiron M Das (Robert Wood Johnson
Medical School, NJ, USA).

Briefly, after overnight heating at 371C, the
sections were deparaffinized in xylene and rehy-
drated in graded alcohols (100 and 95% ethanol,
two and three changes, respectively, 3min each).
Endogenous peroxidase was blocked by heating the
slides in a hydrogen peroxide solution (3%) for
5min in a microwave oven (30% power). The slides
were arranged in pairs and all immunostainings
were performed using capillary action. Pretreatment
with trypsin (1mg in 150ml Tris-HCl, 0.05M, pH
7.6) solution for 15min at room temperature was
performed, before an antigen retrieval technique
using citrate buffer (0.01M, pH 6.0) and microwave
heating was applied. Type, specificity and dilution
of the antibodies used are listed in Table 1. The
tissues were incubated with primary antibodies
overnight at 41C in humid chamber. After washing,
incubation with biotinylated secondary antibodies
was performed for 30min at room temperature.
Sections were rinsed and incubated with streptavi-
din–biotin–peroxidase complex (Strept-ABCom-
plex, Dako, Carpinteria, CA, USA) for 30min at
room temperature. Diaminobenzidine (SIGMA FAST

DAB Peroxidase Substrate Tablet Set, Sigma-Al-
drich, St Louis, MO, USA) was used as a chromogen.
With the exception of Ki-67, which was counter-
stained with methyl green, all the remaining stains
were counterstained with hematoxylin. Finally, the
sections were dehydrated in graded alcohols,
cleared in xylene and mounted with permanent
mounting medium. Negative controls were per-
formed by omitting the primary antibody.

Statistical Analysis

Statistical analysis was performed and graphics
were drawn using Statistical Package for Social
Sciences (SPSS) and Statistical Analysis System
(SAS) software. T-test or Fisher’s exact test for
comparison of results was utilized as applicable.
The level of significance was set at Po0.05.

Results

Patients

The mean age of the patients with Barrett’s esopha-
gus (n¼ 52) was 62.6 years (7s.d. 10.3), while the
mean age of the patients with gastric intestinal
metaplasia (n¼ 50) was 55.5 years (7s.d. 10.6).
Detailed demographic data are shown in Table 2.

Histological Assessment

Histochemical and immunohistochemical staining
were assessed by light microscopy. A semiquantita-
tive 0–3 scale was applied in every case according to
the proportion of metaplastic epithelium displaying
incomplete intestinal metaplasia, proportion of
sulfomucins among acid mucins, and proportion of
metaplastic epithelium expressing immunoreactiv-
ity (MUCs, Das-1, cytokeratins, inducible nitric
oxide synthase and cyclooxygenase-2) as follows:
0¼ 0–5%; 1¼ 6–34%; 2¼ 35–64%; and 3¼ 65–
100%. Areas r5% were considered negative.

Table 1 Antibodies, type, specificity and dilutions

Antibody Typea Specificity Dilution

HMFG1 Mouse mAb MUC1 1 : 25
HMFG2 Mouse mAb MUC1 1 : 25
Ccp58 Mouse mAb MUC2 1 : 50
CLH2 Mouse mAb MUC5AC 1 : 50
CLH5 Mouse mAb MUC6 1 :50
Das-1 Mouse mAb Colonic epithelial protein 1 : 25
OV-TL 12/30 Mouse mAb Cytokeratin 7 1 : 25
Ks 20.8 Mouse mAb Cytokeratin 20 1 : 25
iNOS Rabbit pAb iNOS 1 : 300
CX-229 Mouse mAb Cyclooxygenase-2 1 : 100
MIB-1 Mouse mAb Ki-67 1 : 30

a
mAb, monoclonal antibody; pAb, polyclonal antibody; iNOS,

inducible nitric oxide synthase.

Table 2 Age distribution by diagnosis, hospital and sex

Barrett’s esophagus Gastric
intestinal
metaplasia

Tulane UMC VAMC LSU hospital

n Agea n Age n Age

Males 18 59.4 (9.9) 26 66.5 (9.3) 23 57.0 (10.4)
Females 8 57.0 (11.0) — 27 53.7 (10.7)

Tulane UMC; Tulane University Medical Center; VAMC, Veterans
Affairs Medical Center; LSU Hospital, Louisiana State University
Hospital.
a
Mean age in years and standard deviation (s.d.).
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Intestinal metaplasia was classified as complete
(small intestinal or type I) or incomplete (colonic or
types II and III) based on hematoxylin–eosin (H–E)
stain. Complete intestinal metaplasia was character-
ized by the presence of absorptive enterocytes with
eosinophilic cytoplasm with a well-developed
brush border, alternating with well-defined goblet
cells (Figure 1a). Incomplete intestinal metaplasia
was characterized by columnar cells without a clear
brush border and by the presence of many goblet/
mucous cells of varying sizes and shapes (Figure
1b). The area occupied by complete or incomplete
intestinal metaplasia was visually estimated as a
percentage of the total metaplastic area present in
each case.

Of the 52 patients with Barrett’s esophagus 28
(54%) showed areas of complete intestinal metapla-
sia. In average, 89% of the metaplastic area in
Barrett’s esophagus patients was considered of
incomplete type, whereas the remaining 11% was
of the complete type. In contrast, in gastric intestinal
metaplasia, the mean proportional area of incom-
plete and complete intestinal metaplasia was 18.6
and 81.4%, respectively. This difference between
the two groups of patients was statistically signifi-
cant (Po0.001).

Histochemistry

Mucin histochemistry was evaluated with Alcian
blue, pH 2.5/periodic. acid-Schiff and Alcian blue/
high-iron diamine stains. Most (67.3%) cases of
Barrett’s metaplasia had some degree of sulfated
mucins, demonstrable by brown staining in the
Alcian blue/high-iron diamine stain (Figure 2a),
whereas most (77.6%) cases of gastric intestinal

metaplasia had only sialomucins (Figure 2b). The
proportion of sulfated vs sialic mucins was visually
assessed in Alcian blue/high-iron diamine stain in
every case and an approximate percentage for each
was tabulated. The mean percentage of acid mucins
estimated to correspond to sulfomucins was 26.4%
for Barrett’s esophagus and 5.3% for gastric intest-
inal metaplasia (Po0.001). Areas of periodic acid-
Schiff-positive cells, indicating presence of neutral
mucins were found in all of cases of Barrett’s
esophagus.

H. pylori was not observed by Steiner silver stain
in the specimens from patients with Barrett’s
esophagus, whereas it was present in 70% of the
patients with gastric intestinal metaplasia.

Immunohistochemistry

Mucins
MUC1 expression was evaluated by two different
antibodies: HMFG1 and HMFG2.65 MUC1 was
expressed in the superficial two-thirds of the
esophageal squamous epithelium. In non-metaplas-
tic gastric mucosa, foveolar epithelium and a few
mucous glands in antrum and cardia also expressed
MUC1. In the glands of the oxyntic region, it was
observed in chief and parietal cells. Barrett’s
esophagus displayed diffuse expression of MUC1
in both columnar and goblet cells (strong and
consistent with HMFG2 antibody, variable with
HMFG1) with exception of small foci with complete
metaplasia, where MUC1 expression was absent or
faint (Figure 2c). In complete intestinal metaplasia
of the stomach there was no expression of MUC1
(Figure 2d), whereas it was consistently observed in
incomplete intestinal metaplasia (Figure 2e). The
MUC1 immunostaining pattern in columnar cells
was different depending on the antibody used:
strong and diffuse in the cytoplasm with HMFG2
and weak-to-moderate staining in apical membrane
and/or cytoplasm with HMFG1. Goblet cells showed
basolateral staining with both antibodies.

MUC2 immunostaining was absent in normal
gastric and esophageal mucosa. Its expression was
consistently strong in Barrett’s metaplasia (Figure
2f), where 100% of the cases showed expression in
goblet cells and 87% of the cases in columnar cells.
In gastric intestinal metaplasia, MUC2 was present
in goblet cells in 94% of the cases and in columnar
cells in 33% of the cases. However, in gastric
intestinal metaplasia the staining intensity and
pattern differed according to the type of intestinal
metaplasia: In complete type, MUC2 was weakly
expressed in most goblet cells and in rare columnar
cells (Figure 2g), while in incomplete type, MUC2
displayed strong staining in goblet cells and in some
columnar cells (Figure 2h).

MUC5AC was expressed in the foveolar cells and
in the gland necks of the normal gastric mucosa.
It was absent in the normal squamous-lined

Figure 1 Classification of intestinal metaplasia in H–E stain. (a)
Complete type with well-defined goblet cells alternating with
eosinophilic enterocytes displaying well developed brush border.
(b) Incomplete type showing goblet/mucous cells of varying sizes
and shapes, and absence of brush border.
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esophagus. In intestinal metaplasia, MUC5AC ex-
pression was observed in both goblet and columnar
cells in 100% of patients with Barrett’s esophagus
(Figure 2i) and in 40% of patients with gastric
intestinal metaplasia. Furthermore, its expression
pattern was different according to the type of
intestinal metaplasia in both esophagus and
stomach: MUC5AC was expressed in incomplete
type and absent in complete type (Figures 2i
and j).

MUC6 was expressed in the deep glands of the
normal gastric mucosa and absent in both the
superficial gastric epithelium and the normal eso-
phageal tissues. MUC6 expression was absent in any
type of intestinal metaplasia in either esophageal or
gastric tissues. Only in few patients with Barrett’s
metaplasia, MUC6 was observed in some deep
glands, which did not display intestinal phenotype
(Figure 3a) it appears that those deep glands may not
represent the same lineage as Barrett’s epithelium.
These glands were positive for neutral mucins with

periodic acid-Schiff staining, suggesting gastric cell
lineage. In gastric intestinal metaplasia cases, MUC6
was seen in the remaining original nonmetaplastic
glands of the stomach (Figure 3b).

Das-1
In nonmetaplastic tissues, Das-1 immunoreactivity
was absent in esophageal squamous epithelium and
gastric mucosa, but present in ductal epithelium of
esophageal glands. In Barrett’s esophagus, strong
Das-1 immunostaining was observed in goblet and
columnar cells in 96 and 94% of the cases,
respectively (Figure 3c). Das-1-positive goblet cells
were similarly distributed in superficial and deep
epithelium. Columnar cells in Barrett’s esophagus
were positive in superficial epithelium in 7% of the
cases, 86% deep, and 7% in both compartments. In
gastric intestinal metaplasia, goblet and columnar
cells positive for Das-1 were observed in 9 and 19%
of the cases, respectively, only in areas with
incomplete intestinal metaplasia (Figure 3e).

Figure 2 Histochemical and immunohistochemical stainings of Barrett’s esophagus (A, C, F and I) and intestinal metaplasia of the
stomach (B, D, E, G, H and J). (a, b) Alcian blue/high iron diamine staining showing sialomucins (blue) in both, and sulfomucins (brown)
mostly observed in Barrett’s esophagus. (c–e) MUC1 (HMFG2), strongly expressed in Barrett’s epithelium (C) and in incomplete gastric
intestinal metaplasia (E). Nonmetaplastic antral mucosa expresses MUC1 whereas it is absent in complete metaplasia (D). (f–h) MUC2
expression, strong in Barrett’s epithelium (F) contrasting with faint in gastric complete intestinal metaplasia (G) and moderate in gastric
incomplete intestinal metaplasia (H). (i, j) MUC5AC is expressed in Barrett’s epithelium (I), absent in complete type and present in
incomplete type of gastric intestinal metaplasia (J).
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Das-1-positive columnar cells in gastric intestinal
metaplasia were always located in either hyperpro-
liferative necks or in deep glands.

Das-1-positive deep microcysts were observed in
four patients with Barrett’s esophagus and in one
patient with incomplete gastric intestinal metapla-
sia.

Cytokeratins 7 and 20
In nonmetaplastic tissues, strong cytokeratin 7
expression was observed in ductal epithelium of
submucosal esophageal glands, and to a lesser
degree in nonmetaplastic cardia from patients with
Barrett’s esophagus; corpus and antral mucosa were
both negative. Cytokeratin 7 expression was strong
and diffuse, involving the entire Barrett’s epithelium
in 100% of the cases (Figure 3f). Both goblet and
columnar cells were stained. In contrast, only 10%
of the gastric intestinal metaplasia cases were

considered positive; cytokeratin 7 expression was
only observed in areas of incomplete metaplasia and
was seen either in the superficial epithelium, deep
glands, or both compartments. In addition, cytoker-
atin 7 was also strongly expressed in deep micro-
cysts in four patients with Barrett’s esophagus and
in three subjects with antral intestinal metaplasia
(Figure 3h).

Cytokeratin 20 was expressed in superficial foveo-
lar epithelium in nonmetaplastic gastric mucosa
(cardia, corpus and antrum) and absent in esophageal
normal mucosa. In Barrett’s esophagus and in gastric
intestinal metaplasia, 100 and 79% of the cases were
positive for cytokeratin 20, respectively. Goblet and
columnar cells were stained in similar proportion.
Although the cytokeratin 20 expression was dis-
played in higher percentage of cells in Barrett’s
metaplasia than in gastric intestinal metaplasia, it
was always superficial (Figures 3i and j).

Figure 3 Immunohistochemical stainings of Barrett’s esophagus (A, C, F and I) and intestinal metaplasia of the stomach (B, D, E, G, H and
J). (a, b) MUC6 expression in deep glands without intestinal phenotype in both organs. (c–e) Das-1 immunoreactivity, strong in Barrett’s
epithelium (C), negative in gastric complete intestinal metaplasia (D) and scarce in gastric incomplete intestinal metaplasia (E). (f–h)
Cytokeratin 7 expression, strong in Barrett’s esophagus (F), absent in gastric complete intestinal metaplasia (G), and moderate in gastric
incomplete intestinal metaplasia (H), with higher expression in deep microcysts. (i, j) Cytokeratin 20 showing superficial expression in
both entities.
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Inflammatory Markers
Inducible nitric oxide synthase expression was
observed in polymorphonuclear leukocytes and
macrophages in the stroma in both Barrett’s esopha-
gus and gastric intestinal metaplasia. Epithelial
staining was present only in areas with intestinal
metaplasia and in small foci with dysplastic
changes. While 58% of the Barrett’s esophagus cases
had epithelial cells positive for inducible nitric
oxide synthase, only 25% of the gastric ones showed
some degree of epithelial staining. Some inducible
nitric oxide synthase-positive Barrett’s esophagus
cases (18%) displayed strong epithelial staining
(Figure 4a), whereas all of the inducible nitric oxide
synthase-positive gastric intestinal metaplasia cases
were weakly (Figure 4b) or moderately stained.

Furthermore, different epithelial staining pattern
was observed: Barrett’s esophagus showed inducible
nitric oxide synthase expression at the apical
surface and/or in the cytoplasm, while in gastric
intestinal metaplasia it was expressed only at the
apical surface.

Cyclooxygenase-2 immunostaining was observed
in stromal macrophages and endothelial cells in the
gastric and esophageal metaplastic tissues. In Bar-
rett’s esophagus, cyclooxygenase-2 immunoreactiv-
ity was present in epithelial cells in 100% of the
cases, whereas it was observed in 84% of gastric
intestinal metaplasia cases. Barrett’s intestinal me-
taplasia displayed stronger staining (Figure 4c) and
greater proportion of stained cells than gastric
intestinal metaplasia (Figure 4d).

Figure 4 Immunohistochemical stainings of Barrett’s esophagus (A, C and E) and intestinal metaplasia of the stomach (B, D and F). (a, b)
Inducible nitric oxide synthase, strongly expressed in cytoplasm and apical surface of epithelial cells in Barrett’s esophagus (A) and weak
in apical surface in gastric incomplete intestinal metaplasia (B). Stromal polymorphonuclear neutrophils are positively stained. (c, d)
Cyclooxygenase-2 shows strong expression in Barrett’s epithelium and moderate in adjacent squamous epithelium (C) and weaker
expression in gastric intestinal metaplasia (D). (e, f) Ki-67 (MIB-1), showing superficial expansion of the proliferative zone and higher
nuclear labelling index in Barrett’s esophagus (E) than in gastric intestinal metaplasia (F).
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With exception of MUC6, which was negative in
all cases, the remaining markers (HMFG1, HMFG2,
MUC2, MUC5AC, Das-1, cytokeratins 7 and 20,
inducible nitric oxide synthase and cyclooxygenase-
2) showed significantly higher immunoreactivity in
Barrett’s esophagus than in gastric intestinal meta-
plasia (P¼ 0.001 for inducible nitric oxide synthase;
Po0.001 for the other markers). Results are shown
in Figure 5.

Proliferation
Nuclear staining for Ki-67 was assessed in 20 cases
with gastric intestinal metaplasia and in 20 with
Barrett’s esophagus. Only well-oriented mucosa
biopsies were analyzed. Areas showing dysplasia
or indefinite for dysplasia were not assessed. They
were identified according to established criteria:
increase in the nucleus/cytoplasm ratio, nuclear
hyperchromatism, nuclear stratification and loss of
polarity.11,12,66,67 Moderate or strong Ki-67 nuclear
staining was considered positive. Selected meta-
plastic glands were divided halfway in superficial
and deep compartments and positive and negative
epithelial nuclei were counted separately in each
compartment. One to six glands per case were
analyzed. The Ki-67 labelling index was calculated
as the percentage (%) of positive nuclei among the
total number of nuclei in each compartment. In both
compartments, the mean labelling index was sig-
nificantly higher in Barrett’s mucosa than in gastric
intestinal metaplasia (Po0.001). The superficial
compartment showed superficial expansion of the
replication zone in Barrett’s mucosa compared to
gastric intestinal metaplasia (mean Ki-67 labelling

indexes¼ 8.5 and 3%, respectively). Mean Ki-67
labelling indexes in the deep compartment were
48.4 and 35% for Barrett’s esophagus and gastric
intestinal metaplasia, respectively (Figure 4e and f).

Helicobacter pylori Infection

All of the Barrett’s esophagus tissues were negative
for H. pylori and 35 (70%) of the patients with
gastric intestinal metaplasia were positive, evalu-
ated in modified Steiner silver stain.

Comparative analyses between H. pylori-infected
(n¼ 35) and H. pylori-uninfected patients (n¼ 15)
with gastric intestinal metaplasia were made. H.
pylori infection was significantly associated with
greater proportion of incomplete-type intestinal
metaplasia (23% in positive vs 8% in negative
subjects, P¼ 0.017) and higher expression of MUC1
with HMFG2 antibody (P¼ 0.004). There were no
statistically significant differences when HMFG1
(MUC1), MUC2, MUC5AC, Das-1, cytokeratins 7 and
20, inducible nitric oxide synthase and cyclooxy-
genase-2 immunostains were compared between the
two groups. Five out of the 50 patients with gastric
intestinal metaplasia expressed cytokeratin 7, and
all of them were positive for H. pylori.

Discussion

The aim of the study was to attempt to clarify the
reasons behind the marked differences in the
clinical and prognostic impact of intestinal meta-
plasia in the esophagus and in the stomach. The

Figure 5 Phenotypic characteristics in intestinal metaplasia in esophagus (E) and stomach (S). Percentage of metaplastic epithelial cells
immunostained (including goblet and columnar cells together) is classified as 0 (white): 0–5%; 1 (gray): 6–34%; 2 (cross-hatched): 35–
64%; and 3 (black): 65–100%. (MUC1 data shown correspond to HMGF2 antibody.)
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results summarized below are interpreted in the
light of some of the controversies surrounding the
subject.

Historically, the nomenclature applied to the
phenotypic subtypes of intestinal metaplasia has
been confusing. There is general agreement that
such phenotypes differ in terms of their natural
history and prognostic significance. Cross-sectional
and cohort follow-up studies have shown that the
loss of the gastric glands (atrophy) is replaced by a
metaplastic process which is multifocal and be-
comes more extensive as age advances, apparently
due to confluence of neighboring foci.68,69 In young
subjects with less extensive areas of gastric glands
replaced by intestinal phenotypes, the metaplastic
glands closely resemble the normal small intestine.
They secrete exclusively sialomucins and contain
the ‘complete’ set of normal digestive enzymes such
as sucrase, trehalase and alkaline phosphatase.70

Because of these characteristics they have been
assigned the names of ‘small intestinal’, ‘type I’ or
‘complete’ metaplasia.16,70,71 In older patients with
extensive metaplasia, foci resembling enterocolic
glands, without some of the normal digestive
enzymes (trehalase and alkaline phosphatase) and
secreting sulfated mucins are observed. This phe-
notype has been called ‘enterocolic’, ‘colonic’, ‘type
III’ or ‘incomplete’ metaplasia, and is frequently
associated with areas of dysplasia and carcino-
ma.16,70–72 Because of the multitude of names, there
has been a tacit international agreement to refer to
the two phenotypes following the Japanese nomen-
clature based on the presence (‘complete’) or
absence (‘incomplete’) of digestive enzymes.73 This
choice of nomenclature is somewhat unfortunate
because it is counterintuitive since it may imply that
the metaplasia is first ‘incomplete’ and may evolve
to ‘complete’. Clinical and epidemiologic observa-
tions, including follow-up studies indicate that the
natural history of the process goes in opposite
direction: complete (type I) intestinal metaplasia
may evolve to incomplete metaplasia (type III).74

Some patients with incomplete metaplasia have
shown progression to dysplasia and early gastric
cancer.74,75

The larger proportion of sulfated mucins we
observed in Barrett’s esophagus compared to gastric
intestinal metaplasia, taken together with the mor-
phologic characteristics, support previous evidence
that Barrett’s esophagus essentially represents the
incomplete type of intestinal metaplasia.17,76 How-
ever, in all cases, cells other than goblet cells were
found: Alcian blue-positive columnar cells accumu-
lating acid mucins which might represent a ‘pre-
goblet’ intestinal phenotype, as well as periodic
acid-Schiff-positive cells which might represent a
‘normal’ gastric phenotype. Small areas of complete
intestinal metaplasia, with absorptive enterocytes
displaying an eosinophilic cytoplasm and a well-
defined brush border, were found in 54% of the
Barrett’s esophagus cases. These findings may

contribute to settle the controversy about the origin
of Barrett’s esophagus because it has clear simila-
rities to gastric intestinal metaplasia: in both loca-
tions small intestinal mucins are found although in
very different proportions. These observations sug-
gest that Barrett’s esophagus may not always start as
incomplete intestinal metaplasia. In the stomach,
the evolution of intestinal metaplasia is very slow,
lasting for decades. However, the accumulated
experience strongly suggests that complete metapla-
sia makes its appearance first and then extends
gradually in the gastric surface; incomplete meta-
plasia may or may not appear later, in older
subjects.16 In the esophagus, the lesser proportion
of complete intestinal metaplasia found suggests
that the transformation to the incomplete phenotype
takes place earlier in the process and overwhelms
any original areas of complete metaplasia. Once
established, however, the incomplete metaplasia
phenotype is an indicator of high risk of dysplasia
and cancer. These observations, taken together with
reported morphometric criteria, have led to the
suggestion that incomplete metaplasia is an early
or ‘mild’ form of dysplasia.77

The mechanisms involved in the more rapid
transition from complete to incomplete metaplasia
in the esophagus as compared to the stomach are
unknown. Most investigators believe that the main
force driving the precancerous process in the
stomach is H. pylori infection,78 while the driving
force in the esophagus may be the acid-biliary
reflux.79,80 Helicobacter carcinogenesis may be re-
lated to oxygen radicals generation at the tissue
level.81,82 Bile, on the other hand, is considered a
promoter of proliferation and carcinogenesis in
susceptible cells.83

Our findings with mucin immunohistochemistry
indicate that complete metaplasia is characterized
by weak expression of (intestinal) MUC2 and
absence of (gastric) MUC1, MUC5AC and MUC6.
Incomplete metaplasia, including Barrett, displays
strong expression of MUC1, MUC2 and MUC5AC.

Immunostaining with Das-1 antibody, a marker of
colonic epithelium, is negative in complete meta-
plasia but strongly positive in incomplete metapla-
sia in both esophageal and gastric mucosa, data
supporting previous observations.37,38

Complete metaplasia, therefore, represents pre-
dominantly ‘pure’ small intestinal antigens. Incom-
plete metaplasia, on the other hand, expresses small
intestinal (MUC2) antigens, large intestinal (Das-1)
and gastric (MUC1 and MUC5AC) antigens. These
findings could be interpreted as supporting the
hypothesis that loss of differentiation followed by
redifferentiation could be observed in the carcino-
genic process.42 This hypothesis proposes that the
normal epithelium goes through a process of loss of
differentiation, which could lead to the proliferation
of stem cells, which then may be re-differentiated to
diverse phenotypes. In the stomach the glandular
epithelium loses its differentiation and the gastric
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stem cells differentiate towards an intestinal phe-
notype. This may support the ‘common underlying
mechanism’ leading to the ‘mixed gastrointestinal
phenotype’ described by Jass.21 In the esophagus the
squamous epithelium is first destroyed by the acid-
biliary reflux and the esophageal stem cells differ-
entiate towards a glandular phenotype, more resis-
tant than the squamous epithelium to the acid
environment.84

Our observations on cytokeratins indicate that the
most useful marker is represented by cytokeratin 7,
which is absent in complete intestinal metaplasia,
but very abundant in incomplete metaplasia. Cyto-
keratin 7 is a protein observed in fetal stomach,42,43

but absent in the normal adult gastric mucosa. Its
expression in incomplete gastric metaplasia,42,85 in
Barrett’s epithelium, in dysplasia and in carcinoma
again47,86 fits well with loss of differentiation
followed by redifferentiation hypothesis previously
discussed in relation to the mucins expression. It
also reinforces the idea that incomplete metaplasia
may represent an initial phase of dysplasia. In
addition, cytokeratin 7 neoexpression observed by
us in deep microcysts in gastric intestinal metapla-
sia was described recently by Kirchner et al42 in
patients with gastric adenocarcinoma and in an
animal model of infection with H. pylori suggesting
its role in the carcinogenic process.

Contrary to some reports of a typical ‘Barrett’s
pattern’ based on cytokeratins 7 and 20 expression,41

our results indicate that although strong and diffuse
cytokeratin 7 expression is characteristic of Barrett’s
esophagus, cytokeratin 20 is not useful or determi-
nant of a Barrett’s pattern. Cytokeratin 20 expression
displayed a superficial pattern similar in both BE
and gastric intestinal metaplasia, irrespective of the
type of intestinal metaplasia, supporting published
data.87

The expression of cytokeratin 7 in the ‘normal’
cardia, previously reported,36,45 is an intriguing
finding. It suggests that the cardia mucosa differs
phenotypically and perhaps genotypically, from
more distal gastric mucosa.

Our findings on the proliferation marker Ki-67
indicate that the superficial expansion of the
replication zone is significantly greater in Barrett’s
esophagus than in gastric intestinal metaplasia. This
is probably related to the fact that Barrett’s esopha-
gus natural history is shorter than that of gastric
intestinal metaplasia: usually a few years for the
former vs several decades for the latter. The worst
prognosis of Barrett compared to that of gastric
metaplasia may be represented by the higher Ki-67
labelling index leading to greater replication and
superficial expansion of the replication zone. It
appears that the mitogenic stimulus in the esopha-
gus (bile salts?) is more potent than its gastric
equivalent (H. pylori?).

Both Barrett’s esophagus and gastric intestinal
metaplasia are seen in a background of chronic
active inflammation. Even though the causative

agents may differ, chronic active inflammation may
be causally associated with both entities. Clearing
the infection and reinforcing the antioxidant de-
fense mechanisms may delay the precancerous
process. This is strongly supported by chemopre-
vention trials in humans.88,89

Our observations on inflammatory markers con-
firm previous report that inducible nitric oxide
synthase, present in inflammatory cells, become
expressed in the epithelial cells in the incomplete
metaplasia seen in Barrett’s esophagus as well as
dysplastic and carcinoma cells.54,82 Cyclooxygenase-
2 is also seen in these lesions, but can also be found
in complete metaplasia. No clear explanation has
been offered for the role of such markers in
epithelial cells, but it does suggest a role as
promoters of carcinogenesis. Decreasing the impact
of inflammation may contribute to prevention of
Barrett preceded adenocarcinoma. Several studies
using cyclooxygenase-2 inhibitors strongly support
that notion.90–92

From the pathology practice point of view, our
findings suggest that the expressions of MUC1,
MUC5AC (gastric), Das-1 (colonic) and cytokeratin
7 are excellent markers of incomplete metaplasia
and Barrett’s esophagus. Their intensity and the
extent of expression, in addition to that of MUC2,
Ki-67, inducible nitric oxide synthase and cycloox-
ygenase-2, may aid in the evaluation of the patient’s
risk of dysplasia and carcinoma, thereby facilitating
clinical management.
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