Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A ductile ceramic eutectic composite with high strength at 1,873 K

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, SEM image showing the microstructure of a cross-section perpendicular to the solidification direction of the unidirectionally so.
Figure 2: Typical stress–displacement curves in the three-point flexural test at 1,873 K of unidirectionally solidified Al2O.
Figure 3: High-resolution TEM images of the grain boundaries between Al2O3 and GAP phases of sintered composites (a) an.
Figure 4: TEM images showing the dislocation structure of Al2O3 phases (a) and GAP phases (b) at the tensile-str.

References

  1. Becher, P. F. & Wei, G. C. Toughening behavior in SiC-whisker-reinforced alumina. J. Am. Ceram. Soc. 67, C267–C269 (1984).

    Google Scholar 

  2. Lio, S., Watanabe, M., Matsubara, M. & Matsuo, Y. Mechanical properties of alumina/silicon carbide whisker composites. J. Am. Ceram. Soc. 72, 1880–1884 (1989).

    Google Scholar 

  3. Tamari, N., Tanaka, T., Kondou, I. & Kose, S. Sintering of alumina–silicon nitride whisker composites and their properties. J. Ceram. Soc. Jpn 99, 370–375 (1991).

    Google Scholar 

  4. Takeda, M.et al. Properties of the low-oxygen-content silicon carbide fiber after high temperature heat treatment. Ceram. Eng. Sci. Proc. 12, 1007–1018 (1991).

    Google Scholar 

  5. Ishikawa, T., Kajii, S., Matsunaga, K., Hogami, T. & Kohtoku, Y. Structure and properties of Si-Ti-C-O fiber-bonded ceramic material. J. Mater. Sci. 30, 6218–6222 (1995).

    Google Scholar 

  6. Lamicq, P., Bernhart, G. A., Dauchier, M. M. & Mace, J. G. SiC/SiC composite ceramics. Am. Ceram. Soc. Bull. 65, 336–338 (1986).

    Google Scholar 

  7. 7. Lamicq, P. J. Proc. Japan-Europe Symp. on Composite Materials(ed. R&D Inst. of Metals and Composites fot Future Industries) 4–9 (Japan Industrial Technology Assoc., Nagoya, (1993)).

    Google Scholar 

  8. Viechnicki, D. & Schmid, F. Eutectic solidification in the system Al2O3/Y3Al5O12. J. Mater. Sci. 4, 84–88 (1969).

    Google Scholar 

  9. Mah, T. & Parthasarathy, T. A. Processing and mechanical properties of Al2O3/Y3Al5O12(YAG) eutectic composite. Ceram. Eng. Sci. Proc. 11, 1617–1627 (1990).

    Google Scholar 

  10. Parthasarathy, T. A., Mah, T. & Matson, L. E. Creep behavior of an Al2O3-Y3Al5O12eutectic composite. Ceram. Eng. Soc. Proc. 11, 1628–1638 (1990).

    Google Scholar 

  11. Parthasarathy, T. A., Mah, T. -I. & Matson, L. E. Deformation behavior of an Al2O3-Y3Al5O12eutectic composite in comparison with sapphire and YAG. J. Am. Ceram. Sci. 76, 29–32 (1993).

    Google Scholar 

  12. Stubican, V. S., Bradt, R. C., Kennard, F. L., Minford, W. J. & Sorrel C. C. in Tailoring Multiphase and Composite Ceramics (eds Tressler, R. E., Messing, G. L., Patano, C. G. & Newnham, R. E. 103–114 (Mater. Sci. Res. Vol. 20, Plenum, New York, (1986)).

  13. Waku, Y., Nakagawa, N., Ohtsubo, H., Ohsora, Y. & Kohtoku, Y. High temperature properties of unidirectionally solidified Al2O3/YAG composites. J. Jpn. Inst. Metals 59, 71–78 (1995).

    Google Scholar 

  14. Waku, Y., Otsubo, H., Nakagawa, N. & Kohtoku, Y. Sapphire matrix composites reinforced with single crystal YAG phases. J. Mater. Sci. 31, 4663–4670 (1996).

    Google Scholar 

  15. Waku, Y.et al.in Processing and Fabrication of Advanced Materials(eds Srivatsan, T. S. &Moore, J. J.) 323–339 (TMS, Cleveland, (1995)).

    Google Scholar 

  16. Naebu, R. D., Misra, A. & Gibara, R. Plastic flow and fracture of B2 NiAl-based intermetallic alloys containing a ductile second phase. Iron Steel Inst. Jpn. 31, 1172–1185 (1991).

    Google Scholar 

  17. Marshal, D. B. & Evans, A. G. Reply to “Comment on ‘Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System”’. J. Am. Ceram. Soc. 64, C182–C183 (1981).

    Google Scholar 

  18. Bar-On, I., Baratta, F. I. & Cho, K. Crack stability and its effect on fracture toughness of hot-pressed silicon nitride beam specimens. J. Am. Ceram. Soc. 79, 2300–2308 (1996).

    Google Scholar 

  19. Antonietti, M. & Göltner, C. Superstructures of functional colloids: chemistry on the nanometer scale. Angew. Chem. Int. Edn Engl. 36, 910–928 (1997).

    Google Scholar 

  20. Hyde, S.et al. The Language of Shape–The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology(Elsevier, Amsterdam, (1997)).

    Google Scholar 

  21. Clarke, D. R. High-resolution techniques and application to nonoxide ceramics. J. Am. Ceram. Soc. 52, 236–246 (1979).

    Google Scholar 

  22. Echigoya, J., Hayashi, S., Sasaki, K. & Suto, H. Microstructure of directionally solidified MgO-ZrO2eutectic. J. Jpn. Inst. Metals 48, 430–434 (1984).

    Google Scholar 

  23. Wakai, F.et al. Asuperplastic covalent crystal composite. Nature 344, 421–423 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Goulette, M. J. in Proc. 8th Int. Symp. on superalloys(eds Kissinger, R. D. et al.) 3–6 (TMS, Pennsylvania, (1996)).

    Google Scholar 

  25. Erickson, G. L. in Proc. 8th Int. Symp. on superalloys(eds Kissinger, R. D. et al.) 35–43 (TMS, Pennsylvania, (1996)).

    Google Scholar 

  26. Davidge, R. W. & Evans, A. G. The strength of ceramics. Mater. Sci. Eng. 6, 281–298 (1970).

    Google Scholar 

  27. Niihara, K. New design concept of structural ceramics–ceramic nanocomposites. J. Ceram. Soc. Jpn. 99, 974–982 (1991).

    Google Scholar 

Download references

Acknowledgements

We thank M. Suzuki for his assistance in the TEM observations.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waku, Y., Nakagawa, N., Wakamoto, T. et al. A ductile ceramic eutectic composite with high strength at 1,873 K. Nature 389, 49–52 (1997). https://doi.org/10.1038/37937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37937

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing