Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide

Abstract

HOMEODOMAIN proteins regulate diverse developmental processes in a wide range of organisms, yet bind in vitro to DNA sequences that are remarkably similar1. This has raised the fundamental question of how target gene specificity is achieved in vivo. The Drosophila fushi tarazu protein (Ftz) contains a homeodomain2 and is required for the formation of alternate segments3. We have shown previously that a homeodomain-deleted Ftz polypeptide (FtzΔHD), incapable of binding DNA in vitro, could regulate endogenous ftz gene expression4. Here we test FtzΔHD activities in a ftzmutant background and find that, surprisingly, FtzΔHD can directly regulated ftz-dependent segmentation, suggesting that it can control target gene expression through interactions with other proteins. A likely candidate is the pair-rule protein Paired (Prd). FtzΔHD bound directly to Prd in vitro and required Prd to repress wingless in vivo. These results emphasize the pivotal importance of protein–protein interactions in homeodomain protein function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayashi, S. & Scott, M. P. Cell 63, 883–894 (1990).

    Article  CAS  Google Scholar 

  2. Shepherd, J. C. W. et al. Nature 310, 70–71 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Wakimoto, B. T. & Kaufman, T. C. Devl Biol. 81, 51–64 (1981).

    Article  CAS  Google Scholar 

  4. Fitzpatrick, V. D. et al. Nature 356, 610–612 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Furukubo-Tokunaga, K. et al. Genes Dev. 6, 1082–1096 (1992).

    Article  CAS  Google Scholar 

  6. Schier, A. F. & Gehring, W. P. Nature 356, 804–807 (1992).

    Article  ADS  CAS  Google Scholar 

  7. DiNardo, S. & O'Farrell, P. H. Genes Dev. 1, 1212–1225 (1987).

    Article  CAS  Google Scholar 

  8. Ingham, P. W., Baker, N. E. & Martinez-Arias, A. A. Nature 331, 73–75 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Struhl, G. Nature 318, 677–680 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Ish-Horowicz, D. et al. Cell 57, 223–232 (1989).

    Article  CAS  Google Scholar 

  11. Kilcherr, F. et al. Nature 321, 493–499 (1986).

    Article  ADS  Google Scholar 

  12. Li, X., Gutjahr, T. & Noll, M. EMBO J. 12, 1427–1436 (1993).

    Article  CAS  Google Scholar 

  13. Li, X. & Noll, M. EMBO J. 12, 4499–4509 (1993).

    Article  CAS  Google Scholar 

  14. Frigerio, G. et al. Cell 47, 735–746 (1986).

    Article  CAS  Google Scholar 

  15. Bopp, D. et al. Cell 47, 1033–1049 (1986).

    Article  CAS  Google Scholar 

  16. Treisman, J. et al. Genes Dev. 5, 594–604 (1991).

    Article  CAS  Google Scholar 

  17. Baumgartner, S. & Noll, M. Mech. Dev. 33, 1–18 (1991).

    Article  Google Scholar 

  18. Ananthan, J. et al. Molec. cell. Biol. 13, 1599–1609 (1993).

    Article  CAS  Google Scholar 

  19. Driever, W., Thoma, G. & Nüsslein-Volhard, C. Nature 340, 363–367 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Manoukian, A. & Krause, H. M. Genes Dev. 6, 1740–1751 (1992).

    Article  CAS  Google Scholar 

  21. Krause, H. M., Klemenz, R. & Gehring, W. J. Genes Dev. 2, 1021–1036 (1988).

    Article  CAS  Google Scholar 

  22. Gallagher, S. et al. in Current Protocols in Molecular Biology (eds Ausubel, F. A. et al.) 10.8.7–10.8.17 (Wiley, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copeland, J., Nasiadka, A., Dietrich, B. et al. Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide. Nature 379, 162–165 (1996). https://doi.org/10.1038/379162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379162a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing