Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel

Abstract

THE peptide Phe-Met-Arg-Phe-NH2 (FMRFamide) and structurally related peptides are present both in invertebrate and vertebrate nervous systems1,2. Although they constitute a major class of invertebrate peptide neurotransmitters3, the molecular structure of their receptors has not yet been identified. In neurons of the snail Helix aspersa4, as well as in Aplysia bursting5 and motor6 neurons, FMRFamide induces a fast excitatory depolarizing response due to direct activation of an amiloride-sensitive Na+ channel4. We have now isolated a complementary DNA from Helix nervous tissue; when expressed in Xenopus oocytes, it encodes an FMRF-amide-activated Na+ channel (FaNaCh) that can be blocked by amiloride. The corresponding protein shares a very low sequence identity with the previously cloned epithelial Na+ channel subunits7–12 and Caenorhabditis elegans degenerins13–15, but it displays the same overall structural organization. To our knowledge, this is the first characterization of a peptide-gated ionotropic receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Price, D. A. & Greenberg, M. J. Science 197, 670–671 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Greenberg, M. J. & Price, D. A. Prog. Brain Res. 92, 25–37 (1992).

    Article  CAS  Google Scholar 

  3. Cottrell, G. A. Comp. molec. Neurobiol. 63, 279–285 (1993).

    Article  CAS  Google Scholar 

  4. Green, K. A., Falconer, S. W. P. & Cottrell, G. A. Pflügers Arch. 428, 232–240 (1994).

    Article  CAS  Google Scholar 

  5. Ruben, P., Johnson, J. W. & Thompson, S. J. Neurosci. 6, 252–259 (1986).

    Article  CAS  Google Scholar 

  6. Belkin, K. J. & Abrams, T. W. J. Neurosci. 13, 5139–5152 (1993).

    Article  CAS  Google Scholar 

  7. Canessa, C. M., Horisberger, J. D. & Rossier, B. C. Nature 361, 467–470 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M. & Barbry P. FEBS. Lett. 318, 95–99 (1993).

    Article  CAS  Google Scholar 

  9. Canessa, C. M. et al. Nature 367, 463–467 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Lingueglia, E. et al. J. biol. Chem. 269, 13736–13739 (1994).

    CAS  PubMed  Google Scholar 

  11. Voilley, N. et al. Proc. natn. Acad. Sci. U.S.A. 91, 247–251 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Voilley, N. et al. Genomics 28, 560–565 (1995).

    Article  CAS  Google Scholar 

  13. Huang, M. & Chalfie, M. Nature 367, 467–470 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Driscoll, M. & Chalfie, M. Nature 349, 588–593 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Chalfie, M. & Wolinski, E. Nature 345, 410–416 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M. & Barbry, P. J. biol. Chem. 269, 12981–12986 (1994).

    CAS  PubMed  Google Scholar 

  17. Hong, K. & Driscoll, M. Nature 367, 470–473 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Waldmann, R., Champigny, G. & Lazdunski, M. J. biol. Chem. 270, 11735–11737 (1995).

    Article  CAS  Google Scholar 

  19. Galzi, J. L., Revah, F., Bessis, A. & Changeux, J. P. A. Rev. Pharmac. 31, 37–72 (1991).

    Article  CAS  Google Scholar 

  20. Betz, H. Neuron 5, 383–392 (1990).

    Article  CAS  Google Scholar 

  21. Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. Science 254, 432–437 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Valera, S. et al. Nature 371, 516–519 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Brake, A. J., Wagenbach, M. J. & Julius, D. Nature 371, 519–523 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Galzi, J. L. et al. Nature 359, 500–505 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Yang, H. Y. T., Fratta, W., Majane, E. A. & Costa, E. Proc. natn. Acad. Sci. U.S.A. 82, 7757–7761 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Palmer, L. G. A. Rev. Physiol. 54, 51–66 (1992).

    Article  CAS  Google Scholar 

  27. Garty, H. FASEB J. 8, 523–528 (1994).

    Article  Google Scholar 

  28. Li, X. J., Blackshaw, S. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 91, 1814–1818 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Raffa, R. B. Peptides 9, 915–922 (1988).

    Article  CAS  Google Scholar 

  30. García-Añoveros, J., Ma, C. & Chalfie, M. Curr. Biol. 5, 441–448 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingueglia, E., Champigny, G., Lazdunski, M. et al. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–733 (1995). https://doi.org/10.1038/378730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing