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SUMMARY: The analysis of G-banded chromosomes remains the most important tool available to the clinical cytogeneticist.
The analysis is laborious when performed manually, and the utility of automated chromosome identification algorithms has been
limited by the fact that classification accuracy of these methods seldom exceeds about 80% in routine practice. In this study, we
use four new approaches to automated chromosome identification — singular value decomposition (SVD), principal components
analysis (PCA), Fisher discriminant analysis (FDA), and hidden Markov models (HMM) — to classify three well-known chromo-
some data sets (Philadelphia, Edinburgh, and Copenhagen), comparing these approaches with the use of neural networks (NN).
We show that the HMM is a particularly robust approach to identification that attains classification accuracies of up to 97% for
normal chromosomes and retains classification accuracies of up to 95% when chromosome telomeres are truncated or small
portions of the chromosome are inverted. This represents a substantial improvement of the classification accuracy for normal
chromosomes, and a doubling in classification accuracy for truncated chromosomes and those with inversions, as compared
with NN-based methods. HMMs thus appear to be a promising approach for the automated identification of both normal and
abnormal G-banded chromosomes. (Lab Invest 2000, 80:1629–1641).

A lthough the use of spectral karyotyping (Macville
et al, 1997; Schrock et al, 1997; Veldman et al,

1997) is redefining the role of G-banding in chromo-
some analysis, analysis of chromosome banding pat-
terns remains a cornerstone of karyotypic analysis
both for routine diagnosis and for application in such
techniques as comparative genomic hybridization
(Piper et al, 1995). Chromosome classification and
analysis is aided by the use of automated karyotyping
systems that yield a preliminary classification for each
chromosome, which may be corrected by hand as
necessary. Automated karyotyping relies upon acqui-
sition of a digital image, followed by extraction of
chromosome features. Two general approaches to

feature extraction are employed: gray level encoding
of each chromosome and more complex extraction of
distinctive features. These features may then be used
in an algorithm that assigns the chromosome to one of
24 classes (autosomes 1–22, X, and Y). A variety of
such algorithms has been proposed, based upon
approaches such as Bayesian analysis (Lundsteen et
al, 1986), Markov networks (Granum and Thomason,
1990; Guthrie et al, 1993), neural networks (NN)
(Beksac et al, 1996; Errington and Graham, 1993;
Graham et al, 1992; Jennings and Graham, 1993;
Korning, 1995; Leon et al, 1996; Malet et al, 1992;
Sweeney et al, 1994; Sweeney et al, 1997), and simple
feature matching (Piper and Granum, 1989). The re-
ported classification accuracy varies surprisingly little
by approach. Most methods achieve approximately
90% correct classification of the Copenhagen chro-
mosome data set; commercial implementations typi-
cally achieve approximately 80% correct classification
in routine use.

Automated chromosome classification entails sev-
eral steps. First, an image segmentation step is used
to create distinct images of each chromosome in a
metaphase. Then, salient features of the chromosome
image are extracted. Typically, gray level encoding is
employed to represent the chromosome by a vector of
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gray level values, which are obtained by sampling at
evenly spaced intervals along the chromosome’s me-
dial axis. (See, for example, Errington and Graham,
1993.) Different vectors may contain a different num-
ber of samples, so vectors are typically stretched or
compressed to a fixed number of entries via constant
interpolation or downsampling. Because variations in
lighting can cause the gray scale measurements to
vary, all stretched vectors are normalized to Euclidean
magnitude 1. Figure 1 illustrates this stretching, and
Figure 2 illustrates the variations in measured values
for chromosomes having the same identity. Chromo-
some 1 is usually the easiest to identify; it is physically
the longest chromosome, and the banding pattern is
particularly distinctive. The Y chromosome is among
the hardest; it is physically relatively short, and the
banding pattern is often rather indistinct.

Feature extraction provides an alternative to gray
level encoding. Piper and Granum (1989), for example,
have proposed the use of 30 classification parameters
derived from automated measurements. These fea-
tures include the following:

● physical length of the chromosome
● location of the centromere (a narrowed region of

the chromosome)
● the area of the chromosome
● the perimeter of the convex hull of the

chromosome
● the number of bands
● inner products of the gray level values with various

basis vectors resembling a set of wavelet “hat”
functions.

In summary, the problem is to assign an identity
(1–22, X, or Y) to a chromosome, given a vector
containing its gray level measurements or other mea-
sured features and some training vectors with known
identities. Helpful additional output would include de-
gree of certainty in identification, identification of ab-
normal chromosomes, and automatic characterization
of abnormalities.

In this paper we propose some new approaches for
solving the problem of automated chromosome
identification:

● singular value decomposition
● principal component analysis

● Fisher discriminant analysis
● hidden Markov models.
A brief description of each approach follows; more

details may be found in the Appendix.

Singular Value Decomposition (SVD)

One way to pose our problem is to seek among all
vectors in the training set the one that most closely
matches the vector of unknown identity. We then
assign the unknown vector the identity of this most
closely matching chromosome. Viewed in this way,
the problem resembles the retrieval of a document
whose keywords most closely match those of a query.
We represent each document and query by a vector
indicating the relative importance of each keyword.
Literal matching (eg, taking inner products of docu-
ment vectors with the query and then choosing the
maximum) is not usually the best strategy because
latent relationships and document clusters are not
revealed.

Instead, in the latent semantic indexing (LSI)
method (Berry et al, 1995; Deerwester et al, 1990), the
vectors characterizing the documents form the col-
umns of the document matrix. We approximate this
matrix by a low-rank matrix, and then scoring is done
by inner products of the query with the low-rank
approximation.

Principal Component Analysis (PCA)

The SVD algorithm implicitly assumes that the mea-
surements are independent and have similar standard
deviations. If we wish to take covariances into ac-
count, then we need to use the SVD in a somewhat
different way. Rather than finding the identity with the
largest score, we find the one with the minimal Mahal-
anobis distance to the mean of the training chromo-
somes of that identity.

Fisher Discriminant Analysis (FDA)

Fisher discriminant analysis (Mardia et al, 1979) is
similar to principal component analysis in that it uses
a multidimensional normal distribution to model the 24
clusters. Also, like PCA, it projects the data into a

Figure 1.
Stretching a chromosome. The ordinate (y-axis) shows the gray level (staining intensity) as a function of the position along the chromosome, shown on the x-axis
(from the p-terminus on the left to the q-terminus on the right). The chromosome has been stretched from 64 pixels to 93 pixels in length.
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lower dimensional space. This projection is not done
via the SVD but rather by solving a generalized eigen-
value problem. The projection is computed using the
training data so as to maximize the ratio of the
between cluster distances to the within cluster
distances.

Hidden Markov Models (HMM)

One characteristic of speech problems as well as
chromosome karyotyping is that the vectors can be of
variable length. For instance, the duration of sound for
a given phrase varies from speaker to speaker and
even from trial to trial. Similarly, the number of gray
levels sampled from a chromosome is variable. The
SVD, PCA, and NN models all must normalize the
input vector to a fixed number of entries, but hidden
Markov models (HMM) (Baum and Eagon, 1967; Baum
et al, 1970) have no such restrictions. (See Rabiner,

1989, and Rabiner and Juang, 1986, for an introduc-
tion to these methods.)

The models that we build work with a sequence of
gray level “triples” (Fig. 3). From the vector of gray scale
observations, we form a vector of first differences and a
vector of second differences. Our 24 models output
triples of observations approximating those of typical
chromosomes of each identity. An observer, then, would
see a sequence of gray level triples, each representing a
single entry from each of the three vectors. Hidden from
the observer is a Markov chain that is generating the
output. The current state of the chain produces a single
output triple, and then a new state is chosen according
to probabilities specified in a transition probability matrix.
For each sequence of gray level triples, we compute a
probability that the sequence was generated by each of
the 24 models. This 24-element vector of scores is used
to classify each unknown chromosome. The details of

Figure 2.
Samples of chromosome 1 and the Y chromosome from the Edinburgh data set, with two samples of each highlighted for clarity. The ordinate (y-axis) shows the
gray level (staining intensity) as a function of the position along the chromosome, shown on the x-axis axis (from the p-terminus on the left to the q-terminus on
the right).
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the HMM classifier are given in the Appendix of this
article.

Results

Experiment 1

First we compare our results with those of the neural
net model of Errington and Graham (1993). For each of
the three data sets (Philadelphia, Edinburgh, and
Copenhagen), we display in Table 1 the percentage of
chromosomes classified correctly by each model. We
note that HMM frequently gives the best performance.
SVD performs well and is generally better than PCA.
The second differences have little effect on the per-
formance of the neural nets although the first differ-
ences improve performance slightly.

Experiment 2

In this experiment, we explore the robustness of the
methods when there are “mild” chromosomal abnor-
malities present. We degrade the data from each

scoring chromosome (but not the training chromo-
somes) by taking the sequence of gray level values in
the middle 10% and reversing their order. This simu-
lates an internal inversion of chromosomal material.

The behavior of the best methods from Experiment
1 are shown in Table 2. The HMM performs the best,
degrading by at most 8 percentage points. The other
three methods do not behave as well, but each
achieves at least 56% accuracy.

Experiment 3

Next we degrade the data by truncating each of the
scoring chromosomes (but not the training chromo-
somes) by deleting either the first or last 10% of the
gray level values in each sequence. This simulates an
artifact commonly encountered during the “editing
phase” of semiautomated karyotype analysis, in which
overlapping chromosomes are “cut apart,” in addition
to those deletions of the terminal chromosome arms
that occur “naturally.” In Table 3 we see that the HMM
is quite robust on this data, degrading by, at most, 4
percentage points. The SVD is moderately successful,
but PCA and NN methods classify most chromo-
somes incorrectly.

Experiment 4

We also tested several algorithms on the feature data
in an experiment analogous to that of Errington and
Graham (1993). From the data in Table 4, we conclude
that the best methods were PCA and FDA, both of

Figure 3.
Graphic illustration of a hidden Markov model with 10 states. If the model is currently in state 3, then it outputs a triple of values (gray level, first difference, and
second difference) chosen according to the output function B. Then, with probability anext the model transitions to state 4, with probability askip it transitions to state
5, and otherwise it stays in state 3 for another cycle.

Table 1. Results of Experiment 1

Gray level data alone
Phi Edi Cph

%

HMM, no differences 59 67 84
HMM, 1 difference 70 75 91
HMM, 2 differences a73 a78 92
Rank 24 SVD, no differences 65 71 91
Rank 24 SVD, 1 difference 71 a78 a93
Rank 24 SVD, 2 differences 71 a78 a93
PCA, no differences 64 72 86
PCA, 1 difference 68 76 86
PCA, 2 differences 68 75 86
NN, no differences 69 72 90
NN, 1 difference 69 74 92
NN, 2 differences 70 73 92
Errington and Graham (no differences) 71 a78 91

Phi, Philadelphia; Edi, Edinburgh; Cph, Copenhagen; HMM, hidden Markov
model; SVD, singular value decomposition; PCA, principal components anal-
ysis; NN, neural network.

a Best performances.

Table 2. Results of Experiment 2

Internal Inversion
Phi Edi Cph

%

HMM, 2 differences a66 a70 a86
Rank 24 SVD, 2 differences 60 63 71
PCA, 2 differences 56 65 76
NN, 1 differenceb 57 60 77
a Best performances.
b In this experiment, NN with 1 difference performed slightly better than NN

with 2 differences.
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which performed slightly better than the NN of Err-
ington and Graham (1993).

Experiment 5

Under the assumption that each metaphase consists
of chromosomes from a single cell, classification er-
rors can be further reduced by adding the constraint
that the slide produced for a single cell contains, at
most, two copies of the autosomes, and either 2 X’s or
one X and one Y. This assumption is valid in some
special cases, such as chromosome spreads pro-
duced for comparative genomic hybridization. To il-
lustrate how this information can be used, we consider
the results of PCA for the feature data. Given the FDA
scores we can form two likelihood matrices, F and M,
where F corresponds to the assumption that the
patient is female and M that the patient is male. The
likelihood matrix F is formed based on the FDA log
likelihoods as specified by the following equation:

Fij

5 5
likelihood i is type j/2

for j 5 1, . . .,44 and for i 5 1, . . .,46
likelihood i is type X

for j 5 45, 46 and for i 5 1, . . .,46

The matrix M is defined analogously with columns
45 and 46 corresponding to the likelihoods of chro-
mosome X and Y respectively. The total likelihood of
assigning labels to the chromosomes is maximized by
solving two linear programs of a special type, a linear
assignment problem. The linear assignment problem
finds a matching of the rows to the columns with
maximum sum. There are a number of very efficient
polynomial methods for solving this problem (Papa-
dimitriou and Steiglitz, 1982). The method used here

was the Hungarian algorithm, the work of which is
proportional to the cube of the number of rows. Both
the Copenhagen and Edinburgh data sets have the
property that each metaphase consists of chromo-
somes from a single cell. (A number of the met-
aphases from the Philadelphia data set had 47 chro-
mosomes identified on them.) Tables 5 and 6 give the
results of this linear assignment given gray scale
values or feature vectors. For the Edinburgh and
Copenhagen data sets, linear assignment on the re-
sults of the HMM for gray levels with 2 differences
improved the accuracy by 4 to 6 percentage points. It
improved the accuracy by 6 to 8 percentage points for
the truncated sequences and by 9 percentage points
on the chromosomes in which the centers were in-
verted. For feature data, the results improved by 2 or
3 percentage points and were slightly better than
those achieved by Sweeney et al (1994).

Discussion

Interpretation of G-banded chromosomes remains the
cornerstone of both routine karyotyping and chromo-
some identification for such molecular biologic meth-
ods as comparative genomic hybridization. Although
algorithms intended to speed up karyotypic analysis
are widely available, their use has been limited by their
modest accuracy in classifying even “normal” chro-
mosomes. Methods that are sufficiently robust to
accurately classify chromosomes that are abnormal,
as a result of disease, constitutional anomaly, or
artifacts introduced during acquisition of chromosome
images, have not been previously published.

In this paper, we demonstrate that although a num-
ber of algorithms achieve 90% accurate classification
of “normal” chromosomes, most of these algorithms
perform poorly when as little as 10% at the end of a
chromosome arm is truncated. This amount of trun-
cation is commonly encountered in practice. Although
it usually results from artifacts associated with the
acquisition and processing of digital data, truncation
may also be characteristic of disease. Although the
performance of these algorithms is better for chromo-
somes in which a small internal inversion has been
simulated, the rate of correct classification is reduced
by 6% to 22% even for these chromosomes. Auto-
mated classification methods are thus significantly
less useful in routine practice than the putative 90%

Table 3. Results of Experiment 3

Truncated sequences
Phi Edi Cph

%

HMM, 2 differences a70 a74 a89
Rank 24 SVD, 2 differences 52 55 48
PCA, 2 differences 36 46 32
NN, 1 differenceb 35 43 45
a Best performances.
b In this experiment, NN with 1 difference performed slightly better than NN

with 2 differences.

Table 4. Results of Experiment 4

Feature data alone
Phi Edi Cph

%

Rank 24 SVD 73 80 94
PCA 82 85 a95
FDA a83 a86 a95
Errington and Graham 77 82 94

FDA, Fisher discriminant analysis.
a Best performances.

Table 5. Results of Experiment 5: Gray Level Data

Gray level data alone
Edi Cph

%

HMM 78 92
HMM with linear assignment 84 96

Inversion
HMM 70 86
HMM with linear assignment 79 95

Truncated Sequences
HMM 74 89
HMM with linear assignment 82 95
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classification accuracy would suggest. Our results
show that one type of classification algorithm, HMM,
is significantly better at correctly identifying chromo-
somes bearing these abnormalities than are either the
other novel algorithms we explored or the neural
network algorithms in common use. Introducing a
commonly encountered artifact — truncation of the
terminal 10% of either the p- or q-arm, resulted in a
5% to 11% degradation in classification accuracy. In
contrast, the next best method (Rank 24 SVD with 2
differences) had a 22% reduction in accuracy on
truncated chromosomes from the Copenhagen data
set. Our results further demonstrate the utility of
constrained classification algorithms that rely on the
observation that normal cells carry, at most, 2 of each
autosome, and either 2 X chromosomes, or an X and
a Y. These algorithms achieve classification accura-
cies for normal chromosomes of 95% to 97% (Copen-
hagen data set), even for truncated sequences. This
represents a reduction of approximately 50% in the
classification error rate. Although this constraint is
inappropriate in cases where cytogenetic anomaly is
being sought (such as prenatal diagnosis or cytoge-
netic characterization of tumor specimens), it is useful
and appropriate in applications such as comparative
genomic hybridization, in which metaphase spreads
are prepared from cell cultures of “normal” individuals.

HMMs have previously proven useful in several
areas of biological science, including speech recogni-
tion (Jelinek, 1995), EKG analysis (Koski, 1996), gene
identification (Lukashin and Borodovsky, 1998), and
protein structure prediction (Sonnhammer et al, 1998).
These problems are similar in that all involve classifi-
cation of data sequences (vectors) that can demon-
strate substantial within-class variations in length and
pattern. HMMs appear to be especially well-suited to
solving such problems, because the classification
resulting from the model does not depend upon the
precise location of values within the data vector, but
rather upon the relationships between adjacent or
nearly adjacent data values. This feature of HMMs is
very useful in chromosome classification, because the
same chromosome (chromosome 5, for example) can
vary substantially in length among various metaphase
spreads. This feature alone gives HMMs a robustness
that is not found in most other classification ap-
proaches. One result is that chromosome classifica-
tion using HMMs created using normal chromosomes
is expected to remain reliable for substantially larger
truncations/terminal deletions and internal inversions
than were explored in this paper.

HMMs are also expected to be useful in the char-
acterization of abnormal karyotypes for which training
data is not available. For example, one can syntheti-

cally create HMMs characteristic of reciprocal t(14; 18)
translocations with varying break points, based upon
data obtained from normal chromosomes 14 and 18.
(This can also be done with NN, SVD, PCA, and FDA.)
By competitively scoring these models, we may ex-
pect to obtain a fairly precise localization of the break
point if a chromosome bearing t(14; 18) is encountered
in a test set. By creating such “synthetic” HMMs for
chromosomes bearing truncations and deletions, we
may expect to further improve the classification of
chromosomes bearing these anomalies as well.

In summary, we have applied four mathematical
approaches for automated chromosome identifica-
tion: singular value decomposition (SVD), principal
components analysis (PCA), Fisher discriminant anal-
ysis (FDA), and hidden Markov models (HMM). We
have demonstrated that although all these ap-
proaches yield similar results for “perfect” normal
chromosomes, the HMM approach is superior for the
identification of imperfect and/or abnormal chromo-
somes. Finally, we expect that the HMM approach can
be implemented in a way that allows highly accurate
classifications to be made even when few data are
available upon which to train new models.

Materials and Methods

Data Preparation

The Copenhagen, Edinburgh, and Philadelphia data
sets were used in creating and validating the mathe-
matical models. These data sets consist of vectors of
the gray values obtained from linear axial traces of
5100 to 8100 chromosomes each, together with the
chromosome assignment. Each of these data sets
was divided into “training” and “scoring” parts as
done by Errington and Graham (1993).

Classification Experiments

A more precise description of each of the mathemat-
ical models underlying our classification experiments
is given in the Appendix. The data for our SVD, PCA,
and FDA experiments were the gray level vectors,
augmented by their first and second differences. We
computed differences between vector elements, and
then stretched them to equal lengths (the length of the
longest training vector). The first and second differ-
ences were weighted by a factor of 5. These vectors
were then used without further preprocessing.

For experiments, we set the rank of the SVD ap-
proximations to K 5 24. A rank of 36 improves the
results slightly but does not seem to be worth the
extra computational effort.

Back-propagation networks were created and run
using Netmaker Professional for Windows and Brain-
maker Professional for Windows (California Scientific
Software, Nevada City, California). Networks con-
sisted of an input layer of 15, 30, or 45 nodes, where
only gray levels, gray levels plus first differences, or
gray levels plus first and second differences were
used as network input. A single hidden layer of 200
nodes was used. Network output was a 24-element

Table 6. Results of Experiment 5: Feature Data

Feature data alone Edi Cph

Feature data 86 95
Feature data with linear assignment 89 97
Sweeney, Musavi, and Guidi with constraint 84 96
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vector, in which each element represented one chro-
mosome type. In the training phase, each chromo-
some was represented by both the 15-, 30-, or 45-
element input vector and a 24-element classification
vector in which all elements were set to 0 except for
that element corresponding to the encoding chromo-
some. Training was accomplished using a constant
“learning rate” of 0.05, with a training tolerance of 0.4.
When 75% correct classification of the training set
was achieved, the training tolerance was reduced by a
factor of 0.9. Training was discontinued after 1000
iterations in which each chromosome in the training
set was presented to the network. During the testing
phase, a chromosome was considered to be correctly
identified by the neural network if the largest element
in the neural network output vector corresponded to
the correct chromosome number.

For the HMM, the training data was further subdi-
vided by chromosome types. A HMM was then found
for each chromosome type, as discussed in the Ap-
pendix. The number of states was set to be the
median length of chromosomes in the training data.
[Au: Anonymous, 1997; Golub and Van Loan, 1996; Gu
and Eisenstat, 1993; Jackson, 1991; Rabiner and
Juang, 1993 have not been cited in the text. Please
cite or remove from reference list.]

Acknowledgements

We are grateful to Robert L. Becker for valuable
discussions and to Mohamad T. Musavi for providing
the chromosome data sets and helping with their use.

References
Baum LE and Eagon JA (1967). An inequality with applica-
tions to statistical estimation for probabilistic functions of a
Markov process and to a model for ecology. Bull Am Math
Soc 73:360–363.

Baum LE, Petrie T, Soules G, and Weiss N (1970). A maxi-
mization technique occurring in the statistical analysis of
probabilistic functions of Markov chains. Ann Math Stat
41:164–171.

Beksac MS, Eskiizmirliler S, Cakar AN, Erkmen AM, Dagde-
viren A, and Lundsteen C (1996). An expert diagnostic
system based on neural networks and image analysis tech-
niques in the field of automated cytogenetics. Technol Health
Care 3:217–229.

Berry MW, Dumais ST, and O’Brien GW (1995). Using linear
algebra for intelligent information retrieval. SIAM Review
37:573–595.

Deerwester S, Dumais ST, Furnas GW, Landauer TK, and
Harshman R (1990). Indexing by latent semantic analysis. J
Soc Inform Sci 41:391–407.

Errington PA and Graham J (1993). Application of artificial
neural networks to chromosome classification. Cytometry
14:627–639.

Graham J, Errington P, and Jennings A (1992). A neural
network chromosome classifier. J Radiat Res (Tokyo)
33(Suppl):250–257.

Granum E and Thomason MG (1990). Automatically inferred
Markov network models for classification of chromosomal
band pattern structures. Cytometry 11:26–39.

Guthrie C, Gregor J, and Thomason MG (1993). Constrained
Markov networks for automated analysis of G-banded chro-
mosomes. Comput Biol Med 23:105–114.

Jelinek F (1995). Training and search methods for speech
recognition. Proc Natl Acad Sci USA 92:9964–9969.

Jennings AM and Graham J (1993). A neural network ap-
proach to automatic chromosome classification. Phys Med
Biol 38:959–970.

Korning PG (1995). Training neural networks by means of
genetic algorithms working on very long chromosomes. Int
J Neural Syst 6:299–316.

Koski A (1996). Modelling ECG signals with hidden Markov
models. Artif Intell Med 8:453–471.

Leon MA, Gader P, and Keller J (1996). Multiple neural
network response variability as a predictor of neural network
accuracy for chromosome recognition. Biomed Sci Instrum
32:31–37.

Lukashin AV and Borodovsky M (1998). GeneMark.hmm:
new solutions for gene finding. Nucleic Acids Res 26:1107–
1115.

Lundsteen C, Gerdes T, and Maahr J (1986). Automated
classification of chromosomes as part of a routine system for
clinical analysis. Cytometry 7:1–7.

Macville M, Veldman T, Padilla-Nash H, Wangsa D, O’Brien
P, Schrock E, and Ried T (1997). Spectral karyotyping, a
24-colour FISH technique for the identification of chromo-
somal rearrangements. Histochem Cell Biol 108:299–305.

Malet P, Benkhalifa M, Perissel B, Geneix A, and Le Cor-
vaisier B (1992). Chromosome analysis by image processing
in a computerized environment. Clinical applications. J Ra-
diat Res (Tokyo) 33(Suppl):171–188.

Mardia KV, Kent JT, and Bibby JM (1979). Multivariate
analysis. New York: Academic Press.

Papadimitriou CH and Steiglitz K (1982). Combinatorial
optimization: Algorithms and complexity. Englewood Cliffs,
NJ: Prentice Hall, 247–255.

Piper J and Granum E (1989). On fully automated feature
measurement for banded chromosome classification. Cy-
tometry 10:242–255.

Piper J, Rutovitz D, Sudar D, Kallioniemi A, Kallioniemi OP,
Waldman FM, Gray JW, and Pinsky S (1995). Computer
image analysis of comparative genomic hybridization. Cy-
tometry 19:10–26.

Rabiner LR (1989). A tutorial on hidden Markov models and
selected applications in speech recognition. Proc IEEE 77:
257–285.

Rabiner LR and Juang BH (1986). An introduction to hidden
Markov models. IEEE ASSP Magazine January:4–16.

Schrock E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J,
Jalal S, Shaffer LG, Papenhausen P, Kozma C, Phelan MC,
Kjeldsen E, Schonberg SA, O’Brien P, Biesecker L, du Manoir
S, and Ried T (1997). Spectral karyotyping refines cytoge-
netic diagnostics of constitutional chromosomal abnormali-
ties. Hum Genet 101:255–262.

Chromosome Identification

Laboratory Investigation • November 2000 • Volume 80 • Number 11 1635



Sonnhammer EL, von Heijne G, and Krogh A (1998). A hidden
Markov model for predicting transmembrane helices in pro-
tein sequences. Ismb 6:175–182.

Sweeney N, Becker RL, and Sweeney B (1997). A compari-
son of wavelet and Fourier descriptors for a neural network
chromosome classifier. Proceedings of the IEEE Conference
on Engineering in Medicine and Biology. Chicago: IEEE
Publications.

Sweeney WPJ, Musavi MT, and Guidi JN (1994). Classifica-
tion of chromosomes using a probabilistic neural network.
Cytometry 16:17–24.

Veldman T, Vignon C, Schrock E, Rowley JD, and Ried T
(1997). Hidden chromosome abnormalities in haematological
malignancies detected by multicolour spectral karyotyping.
Nat Genet 15:406–410.

Appendix

Preparing the Data

In order to use the SVD or PCA methods, all chromo-
some vectors must have the same number of entries.
We discuss in this section how we create these
vectors.

Suppose that we have recorded , gray level values
for a chromosome: z1, . . . , z,, and let ,̂ be the length
to which we stretch all chromosomes. We create a
stretched vector x of length ,̂, where the jth entry in x
is equal to the ith entry in z, with i equal to

, 2 1
,̂ 2 1

~j 2 1! 1 1

rounded to the nearest integer between 1 and ,.
We sometimes use first differences and second

differences for added information. The first and sec-
ond differences of z are denoted z9 and z0, respec-
tively, and defined as

z9 5 3
z2 2 z1

~z3 2 z1!/2···
~z, 2 z,22!/2

z, 2 z,21

4
and z0 5 3

~2z1 2 3z2 1 4z3 2 z4!/4
~z1 2 2z2 1 z3!/4···

~z,22 2 2z,21 1 z,!/4
~2z,23 1 4z,22 2 5z,21 1 2z,!/4

4.

We then stretch z9 and z0 in the same way we
stretched z, creating x9 and x0.

Each chromosome vector x, perhaps with x9 and x0
appended to it, becomes a column in the matrix X
used for training. There are M columns in this matrix,
where M is the number of training chromosomes, and
the number of rows L is either ,̂, 2,̂, or 3,̂, depending
on whether differences are being used.

If we are using “feature” data, then we simply let the
L 3 M matrix X denote the matrix of features where L
denotes the number of features and each column is
the data for a different chromosome.

SVD Method

One way to pose our problem is to seek the chromo-
some in the training set that most closely matches the
chromosome of unknown type. Viewed in this way, the
problem resembles textual information retrieval where
the goal is to find a document that most closely
matches a given query. Each document and query is
represented by a vector of keyword weights (e.g., the
keyword “dog” might be assigned a weight of 3 if it
appears in a document 3 times). Literal matching (e.g.,
taking inner products of document vectors with the
query vector and then choosing the maximum) is not
usually the best strategy because latent relationships
and document clusters are not revealed.

Instead, the latent semantic indexing (LSI) method
(Deerwester et al, 1990; Berry et al, 1995), approxi-
mates the document matrix (consisting of all docu-
ment vectors) via a low-rank approximation and uses
the columns of the low-rank matrix to compute the
inner products with the query vector.

We form a low-rank approximation to the training
chromosomes matrix X using the singular value de-
composition (SVD)

X 5 U(VT 5 O
i51

L

siuivi
T ,

where U 5 [u1 u2 . . . uL] is an L 3 L orthogonal matrix,
V 5 [v1 v2 . . . vM] is an M 3 M orthogonal matrix, and
( 5 diag{s1, s2, . . . , sL} is a diagonal matrix of size
L 3 M with s1 $ s2 $ . . . $ sL $ 0 where we assume
L # M. The best rank-R (R , L) approximation of A is
given by the truncated SVD

U# (# V# T 5 O
i51

R

siuivi
T (1)

(Golub and Van Loan, 1996). Since it filters out much
of the variations, a low-rank approximation often
works better than the original matrix in an application
such as this. If all chromosomes of a given type
matched identically, then X would have rank 24 (i.e.,
there would be only 24 unique columns), so a reason-
able value for R is 24.

We apply LSI to the chromosome problem as fol-
lows. Suppose y is the data for a chromosome of
unknown type that has already been stretched to
length L. (If y is longer than L, then the number of
entries is reduced using rectangular rule integration.)
Then, using the truncated SVD approximation of X, an
M-vector of scores is computed by

s 5 O
i51

R

si~yT ui!D# vi ,

where D# is a diagonal matrix that normalizes the
columns of U# 2

(V# T to Euclidean length 1. Ideally, the
unknown chromosome has the identity corresponding
to the largest score sj, j 5 1, 2, . . . , M. However, our
training data is not perfect, and using only the top

Conroy et al

1636 Laboratory Investigation • November 2000 • Volume 80 • Number 11



scoring chromosome may cause anomalous results.
Instead, we use the top T scores and a “voting
scheme” as follows. For t 5 1, 2, . . . , T, if the tth
biggest score is from a chromosome of type k, add

T 2 t 1 1
Mk

to type k’s tally, where Mk is the number of training
chromosomes of type k. A typical value of T is 5. The
unknown chromosome’s type is identified as the type
with the highest tally.

It is relatively easy to update the SVD if new chro-
mosomes are added to the training set (Gu and
Eisenstat, 1993), and this is a major advantage.

Principal Component Analysis

The SVD algorithm implicitly assumes that the mea-
surements are independent and have similar standard
deviations. If we wish to take covariances into ac-
count, then we need to use the SVD in a somewhat
different way. Rather than finding the chromosome
type with the largest score, we find the type with the
minimal Mahalanobis distance (defined in Equation 2)
to the mean of the training vectors of that type. Let Xk

be the matrix whose columns are training chromo-
somes of type k, normalized to Euclidean length one,
and let x#k be the mean of these column vectors. Define
the matrix

X̃k 5 Xk 2 x#keT,

where e is the vector of all 1’s. Let Uk(kVk
T be X̃k’s

SVD. Then the Mahalanobis distance between an
unknown chromosome y (stretched to length L and
normalized to Euclidean length one) and the cluster for
chromosome type k is

dk 5 ~y 2 x#k!
T~X̃kX̃k

T!21~y 2 x#k! 5 i(k Uk
T~y 2 x#k!i2.

(2)

This is often simplified by assuming a common covari-
ance matrix X̃X̃T, a possibly low-rank matrix derived
from the full set of training chromosomes, in place of
X̃kX̃k

T. The unknown chromosome’s type is identified
as the type with the least distance to its cluster. See
Jackson (1991).

Fisher Discriminant Analysis

In this algorithm (Mardia et al, 1979), the training
phase first computes two matrices:

Sw 5 O
k51

24

X̃kX̃k
T ,

where X̃k was defined for PCA and

Sb 5 O
k51

24

Mk~x#k 2 m!~x#k 2 m!T,

where x#k is also as defined for PCA and Mk is again the
number of training vectors of type k. Here the vector m

is the “grand mean”; that is, the mean of all M training
chromosomes. We then find a 23-dimensional sub-
space over which the minimum of the function

xTSbx
xTSwx

.

is maximized. This will determine the projection sub-
space which maximizes the ratio of the between
cluster distances to the within cluster distances. The
solution can be computed by solving a generalized
eigenvalue problem. If the columns of V 5 [v1, v2, . . . ,
v23] form an basis for this subspace, then for any
vector x, the Fisher discriminant vector (or projection)
is given by VTx. We use this matrix to project each of
the 24 training clusters and then compute a common
covariance matrix based on the projected training
data.

An unknown chromosome y is then classified by
first projecting its vector into the 23 dimensional space
(i.e., VT y) and then computing the distance to the
nearest cluster using a procedure analogous to the
PCA method. Note that unlike PCA, we use the
projected covariance matrix rather than a low rank
approximation of it.

Hidden Markov Models

The HMMs that we build produce a sequence of
observations from various states. The output of the
model observed at time t is denoted by Ot. An obser-
vation consists of either a single gray level value, Ot 5
{zt}; a gray level value and its first difference, Ot 5 {zt,
z9t}; or a gray level value, its first difference, and its
second difference, Ot 5 {zt, z9t, z0t}. For convenience,
the rest of this discussion will assume a triple of
observations.

The HMM consists of a Markov chain that generates
output typical of the vectors of a particular type of
chromosome. The state of the chain is hidden from the
observer, hence the name of the method.

To prepare the data to create an HMM, we do not
need to make all of the vectors equal in length (as in
SVD and PCA), but we do normalize each sequence to
mean zero and standard deviation one by subtracting
the mean of each of the three components and
dividing by the standard deviation of this component.
This normalization is done on a sequence-by-
sequence basis, i.e., individual means and standard
deviations are computed for each sequence. Thus, it
removes some of the variability caused by inconsis-
tencies in staining and illumination.

For chromosome karyotyping we create 24 HMMs,
one per chromosome. We interpret the states of the
HMM as positions in the sequence of gray level triples
for an idealized chromosome of this type and the
observation from a given state as a typical sample of
gray level triples at this position. We first specify the
ideal number of states (i.e., length) and denote it by N.
The HMM is denoted as l 5 (A, B, p), and the meaning
of the parameters is described below.
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● We set the number of states N in the model to the
median length of the vectors for all the chromo-
somes of this type in the training data.

● From a given state, we allow transitions only to the
same state, the next one, or the one beyond that.
This allows for “insertions” and “deletions” but no
backtracking. We set these probabilities to be the
same for all but the last states so that the transition
matrix A is defined by exactly 2 parameters: anext,
the probability of moving to the next state, and askip,
the probability of moving to the one beyond that.
(We cannot “skip” out of state N 2 1, so the
probability of moving to state N from there is set to
anext/(12askip). The probability of staying in state
N 2 1 is similarly adjusted.) The probability of
staying in a state astay is defined to be 1 minus the
probability of moving out of it.

● The output function B for state i (i 5 1, . . . , N) is
specified by a mean (3 values) mi and covariance (a
symmetric 3 3 3 matrix) Ci. The probability of
outputting a gray scale triple x in state i is modeled
as a mixture of two 3-dimensional normal distribu-
tions: one mean zero variance I (the identity matrix)
and one estimated from the training data given by mi

and Ci. The mixture model is used to lessen the
effects of overtraining, and the mixing weight r was
fixed at 0.8. Thus, the observation triple x is mod-
eled as x ; r1(mi, Ci) 1 (1 2 r)1(0, I)) (where 1
denotes the Normal distribution with given mean
and covariance), and the probability bi of observing
z is proportional to

r

ÎuCiu
e2~z2mi!TCi

21~z2mi! 1 ~1 2 p!e2zTz, (3)

Figure 4.
HMM Output (B) Matrix for chromosome 1. Please see the text for detailed descriptions of these graphs.
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where uCiu is the determinant of the matrix.

● The ith entry in the vector p (i 5 1, . . . , N) gives the
probability of beginning with the model in state i.
Initially, all probabilities are equal; i.e., p(i) 5 1/N for
i 5 1, . . . , N.

The hidden Markov model is illustrated in Figure 3.
The 10N 1 3 parameters that define l 5 (A, B, p) for
the model are chosen by using Baum-Welch re-
estimation (Baum et al, 1970) to train over the data for
that chromosome. This optimization maximizes the
likelihood that the model is correct.

Once an HMM for a particular chromosome type is
constructed, a sample chromosome can be generated
as follows. Choose a starting state. The next state is
chosen according to probabilities as specified in a
transition probability matrix, A. Continue until we get

to state N. This may take more or fewer than N
transitions depending on how many skip’s and stay’s
we have. The sequence of observations generated in
this process is typical of this type of chromosome.

In Figure 4 we show examples of the output param-
eters for the model for chromosome 1 for the Copen-
hagen data set. The horizontal axis is the index of the
state in the HMM (i.e., the position in the sequence of
gray levels). We plot the mean gray scale output from
that state, displaying the variance by an error bar.
There are three plots: one for the gray level value, one
for the first difference, and one for the second differ-
ence. The covariances between the gray level and its
first difference (components 1 and 2), between the
gray level and its second difference (components 1
and 3), and finally between the first difference and the
second difference (components 2 and 3) are given in

Figure 5.
HMM Output (B) Matrix for chromosome Y. Please see the text for detailed descriptions of these graphs.
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the fourth plot. Figure 5 gives the same information for
chromosome Y.

Baum-Welch Re-estimation for HMM

To build an HMM, we use Baum-Welch Re-estimation
to determine the transition matrix A, the output func-
tion B, and the initial state distribution p. We also use
it for scoring chromosomes.

For an individual chromosome, the Baum-Welch
method aligns the gray level triples to an idealized
model sequence so that common features can be
statistically exposed. Specifically, we start with the
nominal HMM l 5 (A, B, p) and a sequence of
observations {O1, O2, . . . , OT} for the m-th chromo-
some of type k. We compute the N-vectors at

(m), bt
(m),

gt
(m) and N 3 N matrices jt

(m) for t 5 1 . . . , T, which are
probability distributions that give the alignment to the
idealized chromosome we will shortly define. For con-
venience, we drop the superscript until we show how
to combine the individual parameters to form an HMM
for type k.

We let at(i) 5 Pr({O1, O2, . . . , Ot} and state iul) for
t 5 1, . . . , T. In other words, at(i) is the probability that
we have observed the sequence {O1, O2, . . . , Ot} and
are currently in state i (1 # i # N) given the model. We
can compute at(i) recursively as follows. Let a1(i) 5 p(i)
and compute

at 5 DOt A
Tat21 for t 5 2, . . . , T,

where

DOt 5 diag$b1~Ot!, b2~Ot!, . . . , bN~Ot!%,

where b(Ot) is as defined in Equation 3 with z 5 Ot. The
probability of the entire observation sequence is given
by

Pr~$O1 , O2 , . . . , OT%ul! 5 O
i51

N

aT~i!. (4)

We define bt(i) 5 Pr({Ot11, Ot12, . . . , OT}ui and l),
i.e., bt(i) is the probability that we will observe the
sequence {Ot11, Ot12, . . . , OT} given that we are at
state i and l. A backwards recursion lets us compute
bt(i) as follows. Initialize bT to all ones, and then

bt 5 ADOt11bt11 for t 5 T 2 1, . . . , 1.

The results of these two recursions are combined to
form

gt~i! 5 Pr~i at tu$O1 , O2 , . . . , OT% and l!,

i.e., gt(i) is the probability of being in state i at time t
given the sequence of observations {O1, O2, . . . , OT}
and the model l. The formula is given by

gt~i! 5
at~i!bt~i!

Pr~$O1 , O2 , . . . , OT%ul!
.

Likewise, jt(i, j) 5 Pr((i at t) and j at t 1 1)u{O1, O2, . . . ,
OT} and l) is the probability of being at state i at time

t and at state j at time t 1 1 given the sequence of
observations {O1, O2, . . . , OT} and l, and is given by

jt~i, j! 5
at~i!Aijbt11~j!bj~Ot11!

Pr~$O1 , O2 , . . . , OT%ul!
.

The probabilities given by the g’s and the j’s are
used to derive new estimates for the parameters of the
HMM. Given the j’s, a new estimate of the Markov
transition matrix is computed as follows. Compute

ãstay 5 O
m51

Mk O
i51

N O
t51

T

jt
~m!~i, i!,

ãnext 5 O
m51

Mk O
i51

N21 O
t51

T

jt
~m!~i, i 1 1!,

ãskip 5 O
m51

Mk O
i51

N22 O
t51

T

jt
~m!~i, i 1 2!.

The above three quantities are normalized to sum to 1
and thereby give the new Baum-Welch estimate of A
for the k-th chromosome type.

Similarly, we re-estimate the transition output func-
tion B. Recall that B is a mixture of two 3 dimensional
normal distributions: one is fixed to be mean zero and
covariance I, and the other is parameterized by mi and
Ci. In order to account for the contributions of each
sequence in the training set, we compute the param-
eters for a new estimate for the output function B as

m̂i 5

O
m51

Mk O
t51

T

gt
~m!~i!Ot

~m!

O
m51

Mk O
t51

T O
i51

N

gt
~m!~i!

for i 5 1, . . . , N, (5)

and

Ĉi 5

O
m51

Mk O
t51

T

gt
~m!~i!~Ot

~m! 2 mi!~Ot
~m! 2 mi!

T

O
m51

Mk O
t51

T O
i51

N

gt
~m!~i!

for

i 5 1, . . . , N. (6)

Finally, the initial state distribution is re-estimated
for each chromosome of type k by setting

p~m! 5 g1
~m! .

This completes one iteration of Baum-Welch re-
estimation. The iterations continue until the relative
improvement in log probability of the training data is
less than 1023.
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Scoring with HMM

Once we have defined these 24 HMMs, we can
classify an unknown chromosome by first calculating
the probability of obtaining its observations as the
output from each model. To compute a score from
model k (k 5 1, . . . , 24),

● We perform two iterations of Baum-Welch re-
estimation (Baum et al, 1970), updating only the
initial state distribution p.

● We then compute the probability that the observa-
tions were an output of each model using Equation
4.

The 24 resulting scores are correlated, for example,
with chromosomes of nearly the same length rather
likely to be confused. Correlations in the scores can be
exploited by viewing the 24 scores as feature vectors.
The classification is then achieved by building a linear
discriminant analysis model based on the training data
using these 24 long vectors. The LDA score based on
the 24 HMM scores is then used to classify the
chromosome.
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