Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo

Abstract

THE eruption of Mount Pinatubo in the Philippines led to a cold air-temperature anomaly throughout the Middle East during the winter of 19921. Here we report that the vertical mixing in the Gulf of Eilat (Aqaba) that winter was unusually deep―extending to >850 m―resulting in increased supply of nutrients to surface waters, which fuelled extraordinarily large algal and phytoplank-ton blooms. By spring, a thick mat of filamentous algae covered broad sections of the underlying reef causing extensive coral death. Branching colonies and solitary mushroom corals were most severely affected. This sequence of events, in which a short-term atmospheric cooling leads to a remarkable ecological response, is made possible by the unusually weak water-column stratification of the Gulf of Eilat. The depth of local vertical mixing during winter is determined by the net heat loss across the seaá¤-air interface, so that anomalously cold winters drive the deeper mixing that can lead to increased phytoplankton blooms. Records of such events in fossil reefs may provide useful indicators of past variations in regional air temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robock, A. & Mao, J. Geophys. Res. Lett. 19, 2405–2408 (1992).

    Article  ADS  Google Scholar 

  2. Reiss, Z. Hottinger, L. The Gulf of Aqaba, Ecological Micropaleontology (Springer, Berlin, 1984).

    Book  Google Scholar 

  3. Murray, S. P., Hecht, A. & Babcock, A. J. mar. Res. 42, 265–287 (1984).

    Article  Google Scholar 

  4. Paldor, N. & Anati, D. A. Deep-Sea Res. 26, 661–672 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Wolf-Vecht, A., Paldor, N. & Brenner, S. Deep-Sea Res. 39, 1393–1401 (1992).

    Article  ADS  Google Scholar 

  6. Knauss, J. A. Introduction to Physical Oceanography (Prentice-Hall, New Jersey, 1978).

    Google Scholar 

  7. Benayahu, Y. & Loya, Y. Proc. 3rd Int. Coral Reef Symp. (ed. Taylor, D. L.) 383–389 (Univ. Miami, 1977).

    Google Scholar 

  8. Sverdrup, H. U. J. Cons. perm. Int. Explor. Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  9. Levitus, S. Climatological Atlas of the World Ocean (NOAA Prof. Pap. 13, US Dept of Commerce, Washington DC. 1982).

    Google Scholar 

  10. Venrick, E. L. Limnol. Oceanogr. 38, 1135–1149 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Guzman, H. M., Cortes, J., Glynn, P. W. & Richmond, R. H. Mar. Ecol. Prog. Ser. 60, 299–303 (1990).

    Article  ADS  Google Scholar 

  12. Jokiel, P. L. & Coles, S. L. Mar. Biol. 43, 201–208 (1977).

    Article  Google Scholar 

  13. Luhr, J. F. Nature 354, 104–105 (1991).

    Article  ADS  Google Scholar 

  14. Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J. & Walter, L. S. Geophys. Res. Lett. 19, 151–154 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Graf, H.-F., Kirchner, I., Robock, A. & Schult, I. Clim. Dyn. 9, 81–93 (1993).

    Article  Google Scholar 

  16. Hansen, J., Lacis, A., Ruedy, R. & Sato, M. Geophys. Res. Lett. 19, 215–218 (1992).

    Article  ADS  Google Scholar 

  17. Dutton, E. & Christy, J. R. Geophys. Res. Lett. 19, 2313–2316 (1992).

    Article  ADS  Google Scholar 

  18. Graf, H.-F., Perlwitz, J. & Kirchner, I. Beitr. Phys. Atmosph. 67, 3–13 (1994).

    Google Scholar 

  19. Brenner, S., Rosentraub, Z., Bishop, J. & Krom, M. Dyn. Atmos. Oceans 15, 457–476 (1991).

    Article  ADS  Google Scholar 

  20. Halpert, M. S. et al. Eos 74, 433–438 (1993).

    Article  ADS  Google Scholar 

  21. Kirchner, I. & Graf, H.-F. Max-Planck-Inst. Mete. Rep. 121, 1–57 (1993).

    Google Scholar 

  22. Dunbar, R. B. & Wellington, G. M. Nature 293, 453–455 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Shen, G. T. et al. Paleoceanography 7, 563–588 (1992).

    Article  ADS  Google Scholar 

  24. Venrick, E. L., & Hayward, T. L. Calif. Coop. ocean. Fish. Invest Rep. 25, 74–79 (1984).

    Google Scholar 

  25. Wyrtki, K. J. geophys. Res. 70, 4547–4559 (1965).

    Article  ADS  Google Scholar 

  26. Kondo, J. Bound. Layer Met. 9, 91–112 (1975).

    Article  ADS  Google Scholar 

  27. Mellor, G. L. & Yamada, T. J. Atmos. Sci. 31, 1791–1806 (1974).

    Article  ADS  Google Scholar 

  28. Mellor, G. L. & Yamada, T. Rev. Geophys. Space Phys. 20, 851–875 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995). https://doi.org/10.1038/377507a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377507a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing