Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional structure of the kinesin headá¤-microtubule complex

Abstract

KINESIN is a microtubule (MT)-associated 'motor' molecule fundamental to organelle transport1,2. Recently, various kinesin superfamily members (KIFs) have also been identified and suggested as being responsible for the transport of specific organelles3¤-5. Kinesin is a heterotetramer composed of two heavy chains and two light chains. The heavy chains form two globular heads, a rod and a fan-like tail completed by the light chains6,7. The globular head, which is composed of approximately 340 amino-terminal residues of the heavy chain, includes both ATP-binding and MT-binding domains, and its recombinant protein also has these properties8. To improve the understanding of the mechanism offeree generation by an MT-based molecular motor, kinesin, we report here the three-dimensional structure of the complex of a recombinant kinesin head and MTs, as revealed by helical reconstruction from cryo-electron micrographs. A kinesin head is a globular teardrop-like structure binding to the ridge of one protofilament of MTs. We have determined the polarity of the structure of the complex of MTs and the kinesin head in relation to MT polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vale, R. in Guidebook to the Cytoskeletal and Motor Proteins (eds Thomas, K. & Vale, R.) 175–212 (Oxford Univ. Press, 1993).

    Google Scholar 

  2. Brady, S. T. Neuron 7, 521–533 (1991).

    Article  CAS  Google Scholar 

  3. Hirokawa, N. Curr. Opin. Neurobiol. 3, 724–731 (1993).

    Article  CAS  Google Scholar 

  4. Nangaku, M. et al. Cell 79, 1209–1220 (1994).

    Article  CAS  Google Scholar 

  5. Okada, Y., Yamazaki, H., Sekine, Y. & Hirokawa, N. Cell 81, 769–780 (1995).

    Article  CAS  Google Scholar 

  6. Hirokawa, N. et al. Cell 56, 867–878 (1989).

    Article  CAS  Google Scholar 

  7. Scholey, J., Heuser, J., Yang, J. & Goldstein, L. Nature 338, 355–357 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. Science 249, 42–47 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Kikkawa, M., Ishikawa, T., Nakata, T., Wakabayashi, T. & Hirokawa, N. J. Cell Biol. 127, 1965–1971 (1994).

    Article  CAS  Google Scholar 

  10. Kato, K. Eur. J. Neurosci. 2, 704–711 (1991).

    Article  Google Scholar 

  11. Song, Y. & Mandelkow, E. Proc. natn. Acad. Sci. U.S.A. 90, 1671–1675 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Harrison, B. et al. Nature 362, 73–75 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Chrétien, D. & Wade, R. Biol. Cell 71, 161–174 (1991).

    Article  Google Scholar 

  14. Ray, S., Meyhofer, E., Milligan, R. & Howard, J. J. Cell Biol. 121, 1083–1093 (1993).

    Article  CAS  Google Scholar 

  15. Mandelkow, E. & Mandelkow, E. J. molec. Biol. 181, 123–135 (1985).

    Article  CAS  Google Scholar 

  16. Hirokawa, N. J. Cell Biol. 94, 129–142 (1982).

    Article  CAS  Google Scholar 

  17. Mandelkow, E., Schultheiss, R., Rapp, R., Muller, M. & Mandelkow, E. J. Cell Biol. 102, 1067–1073 (1986).

    Article  CAS  Google Scholar 

  18. Beese, L., Stubbs, G. & Cohen, C. J. molec. Biol. 194, 257–264 (1987).

    Article  CAS  Google Scholar 

  19. Song, Y. H. & Mandelkow, E. J. Cell Biol. 128, 81–94 (1995).

    Article  CAS  Google Scholar 

  20. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Nature 373, 718–721 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Unwin, N. Nature 373, 37–43 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Shelanski, M., Gaskin, F. & Cantor, C. Proc. natn. Acad. Sci. U.S.A. 70, 765–768 (1973).

    Article  ADS  CAS  Google Scholar 

  23. Herzog, W. & Weber, K. Eur. J. Biochem. 92, 1–8 (1978).

    Article  CAS  Google Scholar 

  24. Dubochet, J. et al. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  25. Ishikawa, T. & Wakabayashi, T. Biochem. biophys. Res. Commun. 203, 951–958 (1994).

    Article  CAS  Google Scholar 

  26. Egelman, E. H. Ultramicroscopy 19, 367–373 (1986).

    Article  CAS  Google Scholar 

  27. DeRosier, D. & Moore, P. J. molec. Biol. 52, 355–369 (1970).

    Article  CAS  Google Scholar 

  28. Wakabayashi, T., Huxley, H. E., Amos, L. A. & Klug, A. J. molec. Biol. 93, 477–497 (1975).

    Article  CAS  Google Scholar 

  29. Amos, L. A. & Klug, A. J. molec. Biol. 99, 51–64 (1975).

    Article  CAS  Google Scholar 

  30. Witman, G. B. Meth. Enzym. 134, 280–290 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikkawa, M., Ishikawa, T., Wakabayashi, T. et al. Three-dimensional structure of the kinesin headá¤-microtubule complex. Nature 376, 274–277 (1995). https://doi.org/10.1038/376274a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376274a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing