Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses

Abstract

ACTIVITY-DEPENDENT changes in synaptic strength are important for learning and memory. Long-term potentiation (LTP) of glutamatergic excitatory synapses following brief repetitive stimulation provides a compelling cellular model for such plasticity1á¤-4. In the CA1 region of the hippocampus, anatomical studies have revealed large numbers of NMDA (N-methyl-D-aspartate) receptor sites at excitatory synapses5,6, which express primarily an NMDA receptor-dependent form of LTP7. In contrast, these studies5,6 have suggested that mossy fibre synapses activate primarily or exclusively α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and, indeed, these synapses express a form of LTP that is entirely independent of NMDA receptors8,9. Here we present physiological data demonstrating that mossy fibres activate a substantial NMDA receptor synaptic component that expresses LTP. The presence of an NMDA receptor response allowed us to use the pen-channel NMDA receptor antagonist MK-801 to establish directly that the probability of transmitter release is enhanced during the expression of mossy fibre LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Malenka, R. C. & Nicoll, R. A. Trends Neurosci. 16, 521–527 (1993).

    Article  CAS  Google Scholar 

  3. Gustafsson, B. & Wigstrom, H. Semin. Neurosci. 2, 321–333 (1991).

    Google Scholar 

  4. Lisman, J. Trends Neurosci. 17, 406–412 (1994).

    Article  CAS  Google Scholar 

  5. Monaghan, D. T. & Cotman, C. W. J. Neurosci. 5, 2909–2919 (1985).

    Article  CAS  Google Scholar 

  6. Siegel, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 91, 564–568 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  8. Harris, E. W. & Cotman, C. W. Neurosci. Lett. 70, 132–137 (1986).

    Article  CAS  Google Scholar 

  9. Zalutsky, R. A. & Nicoll, R. A. Science 248, 1619–1624 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Jonas, P., Major, G. & Sakman, B. J. Physiol., Lond. 472, 615–663 (1993).

    Article  CAS  Google Scholar 

  11. Katsuki, H., Kaneko, S., Tajima, A. & Satoh, M. Neurosci. Res. 12, 393–402 (1991).

    Article  CAS  Google Scholar 

  12. Ishizuka, N., Weber, J. & Amaral, D. G., J. comp. Neurol. 295, 580–623 (1990).

    Article  CAS  Google Scholar 

  13. Li, X.-G., Somogyi, P., Ylinen, A. & Buzsaki, G. J. comp. Neurol. 339, 181–208 (1994).

    Article  CAS  Google Scholar 

  14. Scharfman, H. E. J. Neurophysiol. 72, 2167–2180 (1994).

    Article  CAS  Google Scholar 

  15. Isaacson, J. S. & Nicoll, R. A. Soc. Neurosci. Abstr. 20, 468 (1990).

    Google Scholar 

  16. Yamamoto, C., Sawada, S. & Takada, S. Expl Brain Res. 51, 128–134 (1983).

    CAS  Google Scholar 

  17. Lanthorn, T. H., Ganong, A. H. & Cotman, C. W. Brain Res. 290, 174–178 (1984).

    Article  CAS  Google Scholar 

  18. Kullman, D. M. Neuron 12, 1111–1120 (1994).

    Article  Google Scholar 

  19. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Science 262, 754–757 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Hessler, N. A., Shirke, A. M. & Malinow, R. Nature 366, 569–572 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Manabe, T. & Nicoll, R. A. Science 265, 1888–1892 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Yamamoto, C., Sawada, S. & Kamiya, H. Neurosci. Lett. 138, 111–114 (1992).

    Article  CAS  Google Scholar 

  23. Xiang, Z., Greenwood, A. C., Kairiss, E. W. & Brown, T. H. J. Neurophysiol. 71, 2552–2556 (1994).

    Article  CAS  Google Scholar 

  24. Staubli, U., Larson, J. & Lynch, G. Synapse 5, 333–335 (1990).

    Article  CAS  Google Scholar 

  25. Nicoll, R. A. & Alger, B. E. J. Neurosci. Meth. 4, 153–156 (1981).

    Article  CAS  Google Scholar 

  26. Castillo, P. E., Weisskopf, M. G. & Nicoll, R. A. Neuron 12, 261–269 (1994).

    Article  CAS  Google Scholar 

  27. Nelson, S., Toth, L., Sheth, B. & Sur, M. Science 265, 774–777 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisskopf, M., Nicoll, R. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256–259 (1995). https://doi.org/10.1038/376256a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376256a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing