Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Powering the flagellar motor of Escherichia coli with an external voltage source

Abstract

ROTARY motors of bacterial flagella are driven by ions that move across the cytoplasmic membrane down an electrochemical gradient1–4. For Escherichia coli, the ions are protons, and the maximum work per unit charge that they can do is the proton-motive force. To test whether motor efficiency is limited by proton leakage or mechanical nonlinearities, we measured torque as a function of protonmotive force. Filamentous cells were drawn into micropipettes and energized with an external voltage source. Torque was proportional to protonmotive force up to –150 mV, twice the span accessible by earlier techniques5–9. This is consistent with a mechanism in which a fixed number of protons, working at unit efficiency, carry the motor through each revolution. We also found that individual torque-generating elements inactivate at low potentials or potentials of reverse sign. When normal potentials are restored, they reactivate sequentially.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blair, D. F. Semin. Cell Biol. 1, 75–85 (1990).

    CAS  PubMed  Google Scholar 

  2. Jones, C. J. & Aizawa, S.-I. Adv. microb. Physiol. 32, 109–172 (1991).

    Article  CAS  Google Scholar 

  3. Macnab, R. M. A. Rev. Genet. 26, 131–158 (1992).

    Article  CAS  Google Scholar 

  4. Schuster, S. C. & Khan, S. A. Rev. Biophys. biomolec. Struct. 23, 509–539 (1994).

    Article  CAS  Google Scholar 

  5. Manson, M. D., Tedesco, P. M. & Berg, H. C. J. molec. Biol. 138, 541–561 (1980).

    Article  CAS  Google Scholar 

  6. Conley, M. P. & Berg, H. C. J. Bact. 158, 832–843 (1984).

    CAS  PubMed  Google Scholar 

  7. Khan, S., Meister, M. & Berg, H. C. J. molec. Biol. 184, 645–656 (1985).

    Article  CAS  Google Scholar 

  8. Meister, M. & Berg, H. C. Biophys. J. 52, 413–419 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Meister, M. thesis, California Inst. Technol., Pasadena, CA (1987).

  10. Katsu, T., Kobayashi, H. & Fujita, Y. Biochim. biophys. Acta 860, 608–619 (1986).

    Article  CAS  Google Scholar 

  11. Ovchinnikov, Y. A. & Ivanov, V. T. in The Proteins 3rd edn Vol. 5 (eds Neurath, H. & Hill, R. L.) 307–642 (Academic, New York, 1982).

    Book  Google Scholar 

  12. Fung, D. C. Y. K. thesis, Harvard Univ., Cambridge, MA (1994).

  13. Block, S. M., Blair, D. F. & Berg, H. C. Nature 338, 514–517 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Block, S. M., Blair, D. F. & Berg, H. C. Cytometry 12, 492–496 (1991).

    Article  CAS  Google Scholar 

  15. Block, S. M. & Berg, H. C. Nature 309, 470–472 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Blair, D. F. & Berg, H. C. Science 242, 1678–1681 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Armitage, J. P. & Evans, M. C. W. Biochim. biophys. Acta 806, 42–55 (1985).

    Article  CAS  Google Scholar 

  18. Ravid, S. & Eisenbach, M. J. Bact. 158, 222–230 (1984).

    CAS  PubMed  Google Scholar 

  19. Berg, H. C., Manson, M. D. & Conley, M. P. Symp. Soc. exp. Biol. 35, 1–31 (1982).

    CAS  PubMed  Google Scholar 

  20. Khan, S. & Berg, H. C. Cell 32, 913–919 (1983).

    Article  CAS  Google Scholar 

  21. Khan, S., Dapice, M. & Humayun, I. Biophys. J. 57, 779–796 (1990).

    Article  CAS  Google Scholar 

  22. Kami-ike, N., Kudo, S. & Hotani, H. Biophys. J. 60, 1350–1355 (1991).

    Article  CAS  Google Scholar 

  23. Meister, M., Lowe, G. & Berg, H. C. Cell 49, 643–650 (1987).

    Article  CAS  Google Scholar 

  24. Berg, H. C. & Turner, L. Biophys. J. 65, 2201–2216 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Kashket, E. R. A. Rev. Microbiol. 39, 219–242 (1985).

    Article  CAS  Google Scholar 

  26. Ishihara, A., Segall, J. E., Block, S. M. & Berg, H. C. J. Bact. 155, 228–237 (1983).

    CAS  PubMed  Google Scholar 

  27. Berg, H. C. & Turner, L. Biophys. J. 58, 919–930 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Brown, K. T. & Flaming, D. G. Advanced Micropipette Techniques for Cell Physiology (Wiley, Chichester, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, D., Berg, H. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809–812 (1995). https://doi.org/10.1038/375809a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375809a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing