Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition-state stabilization as a measure of the efficiency of antibody catalysis

Abstract

THERE are now about 60 examples of reactions that have been successfully catalysed by monoclonal antibodies1–3. Not surprisingly, many of the early examples involved reactions that were already favoured kinetically (such as carbonate and ester hydrolysis). But it has since been shown that antibodies can also accelerate reaction pathways that are normally disfavoured kinetically (by at least a few kcal mol–1)4–7. Here we use transition-state theory to provide a quantitative analysis of the scope and limitations of antibody catalysis. We show that the observed rate accelerations can be predicted from the ratio of equilibrium binding constants of the reaction substrate and the transition-state analogue used to raise the antibody. This scheme allows us to rationalize the product selectivity displayed in antibody catalysis of disfavoured reactions, to predict the degree of rate acceleration that catalytic antibodies may ultimately afford, and to highlight some differences between the way that they and enzymes catalyse reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stewart, J. D., Liotta, L. J. & Benkovic, S. J. Acc. Chem. Res. 26, 396–404 (1993).

    Article  CAS  Google Scholar 

  2. Stewart, J. D. & Benkovic, S. J. Chem. Soc. Rev. 22, 213–219 (1993).

    Article  CAS  Google Scholar 

  3. Lerner, R. A., Benkovic, S. J. & Schultz, P. G. Science 252, 659–667 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Li, T., Janda, K. D., Ashley, J. A. & Lerner, R. A. Science 264, 1289–1293 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Cravatt, B. F., Ashley, J. A., Janda, K. D., Boger, D. L. & Lerner, R. A. J. Am. chem. Soc. 116, 6013–6014 (1994).

    Article  CAS  Google Scholar 

  6. Na, J., Houk, K. N., Shevlin, C. G., Janda, K. D. & Lerner, R. A. J. Am. chem. Soc. 115, 8453–8454 (1993).

    Article  CAS  Google Scholar 

  7. Gouverneur, V. E. et al. Science 262, 204–208 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Wolfenden, R. A. Rev. Biophys. Bioengng 5, 271–306 (1976).

    Article  CAS  Google Scholar 

  9. Benkovic, S. J., Napper, A. D. & Lerner, R. A. Proc. natn. Acad. Sci. U.S.A. 85, 5355–5358 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Jacobs, J. W. Bio/Technology 9, 258–262 (1991).

    CAS  PubMed  Google Scholar 

  11. Jackson, D. Y., Prudent, J. R., Baldwin, E. P. & Schultz, P. G. Proc. natn. Acad. Sci. U.S.A. 88, 58–62 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Stewart, J. D., Roberts, V. A., Thomas, N., Getzoff, E. D. & Benkovic, S. J. Biochemistry 33, 1991–2003 (1994).

    Article  Google Scholar 

  13. Posner, B., Smiley, J., Lee, I. & Benkovic, S. Trends biochem. Sci. 19, 145–150 (1994).

    Article  CAS  Google Scholar 

  14. Stewart, J. D. et al. Proc. natn. Acad. Sci. U.S.A. 91, 7404–7409 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Hirschmann, R. et al. Science 265, 234–237 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Radzicka, A. & Wolfenden, R. Science 267, 90–93 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Rini, J. M., Schulze-Gahmen, U. & Wilson, I. A. Science 255, 959–965 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Benkovic, S. J., Adams, J. A., Borders, C. L. Jr, Janda, K. D. & Lerner, R. A. Science 250, 1135–1139 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Tramontano, A., Janda, K. D. & Lerner, R. A. Science 234, 1566–1570 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Hilvert, D., Carpenter, S. H., Nared, K. D. & Auditor, M.-T. M. Proc. natn. Acad. Sci. U.S.A. 85, 4953–4955 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Jacobs, J., Schultz, P. G., Sugasawara, R. & Powell, M. J. Am. chem. Soc. 109, 2174–2176 (1987).

    Article  CAS  Google Scholar 

  22. Cochran, A. G. & Schultz, P. G. Science 240, 781–783 (1990).

    Article  ADS  Google Scholar 

  23. Janda, K. D., Benkovic, S. J. & McLeod, D. A. Tetrahedron 47, 2503–2506 (1991).

    Article  CAS  Google Scholar 

  24. Iwabuchi, Y. et al. J. Am. chem. Soc. 116, 771–772 (1994).

    Article  CAS  Google Scholar 

  25. Reymond, J.-L., Janda, K. D. & Lerner, R. A. Angew. Chem. int. Edn. engl. 30, 1711–1713 (1991).

    Article  Google Scholar 

  26. Pollack, S. J., Jacobs, J. W. & Schultz, P. G. Science 234, 1570–1573 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Napper, A. D., Benkovic, S. J., Tramontano, A. & Lerner, R. A. Science 237, 1041–1043 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Campbell, D. A. et al. J. Am. chem. Soc. 116, 2165–2166 (1994).

    Article  CAS  Google Scholar 

  29. Iverson, B. L., Cameron, K. E., Jahangiri, G. K. & Pasternak, D. S. J. Am. chem. Soc. 112, 5320–5323 (1990).

    Article  CAS  Google Scholar 

  30. Shokat, K. M., Leumann, C. J., Sugasawara, R. & Schultz, P. G. Nature 338, 269–271 (1989).

    Article  ADS  CAS  Google Scholar 

  31. Janda, K. D., Benkovic, S. J. & Lerner, R. A. Science 244, 437–440 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Tramontano, A., Ammann, A. A. & Lerner, R. A. J. Am. chem. Soc. 110, 2282–2286 (1988).

    Article  CAS  Google Scholar 

  33. Gibbs, R. A., Benkovic, P. A., Janda, K. D., Lerner, R. A. & Benkovic, S. J. J. Am. chem. Soc. 114, 3528–3534 (1992).

    Article  CAS  Google Scholar 

  34. Martin, M. T., Napper, A. D., Schultz, P. G. & Rees, A. G. Biochemistry 30, 9757–9761 (1991).

    Article  CAS  Google Scholar 

  35. Lewis, C., Krämer, T., Robinson, S. & Hilvert, D. Science 253, 1019–1022 (1991).

    Article  ADS  CAS  Google Scholar 

  36. Ashley, J. A., Lo, C.-H. L., McElhaney, G. P., Wirsching, P. & Janda, K. D. J. Am. chem. Soc. 115, 2515–2516 (1993).

    Article  CAS  Google Scholar 

  37. Jacobsen, J. R., Prudent, J. R., Kochersperger, L., Yonkovich, S. & Schultz, P. G. Science 256, 365–367 (1992).

    Article  ADS  CAS  Google Scholar 

  38. Jacobsen, J. R. & Schultz, P. G. Proc. natn. Acad. Sci. U.S.A. 91, 5888–5892 (1994).

    Article  ADS  CAS  Google Scholar 

  39. Cochran, A. G., Pham, T., Sugasawara, R. & Schultz, P. G. J. Am. chem. Soc. 113, 6670–6672 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, J., Benkovic, S. Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature 375, 388–391 (1995). https://doi.org/10.1038/375388a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375388a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing