Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene

Abstract

ERYTHROID Krüppel-like factor (EKLF) was originally isolated from erythroid cell RNA by differential screening and shown to be erythroid-specific, although a low level of EKLF was found in mast cell lines1,2. EKLF contains three zinc-fingers homologous to those found in the Kriippel family of transcription factors. Because it binds the sequence CCACACCCT, EKLF may affect erythroid development as a result of its ability to bind to the CAC box in the promoter of the β-globin gene1,2. Mutation of this element leads to reduced pβ-globin expression3-5and it appears to mediate the effect of the globin locus control region on the promoter6. Here we inactivate the EKLF gene through insertion of a lacZ reporter gene by homologous recombination in embryonic stem (ES) cells. Heterozygous EKLF+/- mice show that the reporter gene is expressed in a developmental!) specific manner in all types of erythroblasts in the fetal liver and adult bone marrow. Homo-zygous EKLF-/- mice appear normal during the embryonic stage of haematopoiesis in the yolk sac, but develop a fatal anaemia during early fetal life when haematopoiesis has switched to the fetal liver. Enucleated erythrocytes are formed but these do not contain the proper amount of haemoglobin. We conclude that the transcription factor EKLF is essential for the final steps of definitive erythropoiesis in fetal liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, I. S. & Bieker, J. J. Molec. cell. Biol. 13, 2776–2786 (1993).

    Article  CAS  Google Scholar 

  2. Feng, W. C., Southwood, C. M. & Bieker, J. J. J. biol. Chem. 269, 1492–1500 (1994).

    Google Scholar 

  3. Orkin, S. H. et al. Nature 296, 627–631 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Orkin, S. H., Antonarakis, S. E. & Kazazian, H. H. J. biol. Chem. 259, 8679–8681 (1984).

    CAS  PubMed  Google Scholar 

  5. Kulozik, A. E., Bellan-Koch, A., Bail, S., Kohne, E. & Kleihauer, E. Blood 77, 2054–2058 (1991).

    CAS  PubMed  Google Scholar 

  6. Antoniou, M. & Grosveld, F. Genes Dev. 4, 1007–1013 (1990).

    Article  CAS  Google Scholar 

  7. Kalderon, D., Roberts, B., Richardson, W. D. & Smith, A. E. Cell 39, 499–509 (1984).

    Article  CAS  Google Scholar 

  8. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  9. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Moule, M. Nature 326, 292–295 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Robertson, E. J. Teratocarcinomas and Embryonic Stem Cells (IRL, Oxford and Washington DC, 1987).

    Google Scholar 

  12. Ploemacher, R. E., Van Soest, P. L., Boudewijn, A. & Neben, S. Leukaemia 7, 1374–1380 (1993).

    CAS  Google Scholar 

  13. Wong, P. M. et al. Blood 62, 1280–1288 (1983).

    CAS  PubMed  Google Scholar 

  14. Chada, K. et al. Nature 314, 377–380 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Epperly, B. R., Bergenhem, N. C. H., Venta, P. J. & Tashian, R. E. Gene 131, 249–253 (1994).

    Article  Google Scholar 

  16. Beaumont, C., Porcher, C., Picat, C., Nordmann, Y. & Grandchamp, B. J. biol. Chem. 264, 14829–14834 (1989).

    CAS  PubMed  Google Scholar 

  17. Eleouet, J. F. & Romeo, P. H. Eur. J. Biochem. 272, 763–770 (1993).

    Article  Google Scholar 

  18. Donze, D., Townes, T. & Bieker, J. J. biol. Chem. 270, 1955–1959 (1995).

    Article  CAS  Google Scholar 

  19. Behringer, R. R., Ryan, T. M. & Palmiter, R. D. Genes Dev. 4, 380–389 (1990).

    Article  CAS  Google Scholar 

  20. Enver, T., Raich, N. & Ebens, A. S. Nature 344, 309–313 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Hanscombe, O. et al. Genes Dev. 5, 1387–1394 (1991).

    Article  CAS  Google Scholar 

  22. Bonnerot, C. & Nicholas, J. F. Meth. Emzym. 225, 451–469 (1993).

    CAS  Google Scholar 

  23. Strouboulis, J., Dillon, N. & Grosveld, F. Genes Dev. 6, 1857–1864 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuez, B., Michalovich, D., Bygrave, A. et al. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375, 316–318 (1995). https://doi.org/10.1038/375316a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375316a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing