Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Specificity in chaperonin-mediated protein folding

Abstract

CHAPERONINS are ubiquitous multisubunit toroidal complexes that aid protein folding in an ATP-dependent manner1–6. Current models of folding by the bacterial chaperonin GroEL depict its role as unfolding and releasing molecules that have misfolded, so that they can return to a potentially productive folding pathway in solution 7,8. Accordingly, a given target polypeptide might require several cycles of binding and ATP-driven release from different chaperonin complexes before reaching the native state. Surprisingly, cycling of a target protein does not guarantee its folding, and we report here that unfolded β-actin or α-tubulin both form tight complexes when presented to either GroEL or its mitochondria! homologue, and both undergo cycles of release and rebinding upon incubation with ATP, but no native protein is produced. We conclude that different chaperonins produce distinctive spectra of folding intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ellis, R. J. Nature 328, 378–379 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Gething, M-J. & Sambrook, J. Nature 355, 33–44 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N. & Furtak, K. Cell 74, 909–917 (1994).

    Article  Google Scholar 

  4. Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Nature 342, 884–889 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G-H. & Cowan, N. J. Cell 69, 1043–1050 (1992).

    Article  CAS  Google Scholar 

  6. Braig, K. et al. Nature 371, 578–586 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Todd, M. J., Viitanen, P. V. & Lorimer, G. H. Science 265, 659–666 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Weissman, J. S., Kashi, Y., Fenton, W. L. & Horwich, A. L. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

  9. Rommelaere, H. et al. Proc. natn. Acad. Sci. U.S.A. 90, 11975–11979 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Kubota, H., Hynes, G., Carne, A., Ashworth, A. & Willison, K. Curr. Biol. 4, 89–99 (1994).

    Article  CAS  Google Scholar 

  11. Gao, Y., Vainberg, I. E., Chow, R. L. & Cowan, N. J. Molec. cell. Biol. 13, 2478–2485 (1993).

    Article  CAS  Google Scholar 

  12. Ursic, D. & Culbertson, M. R. Molec. cell. Biol. 11, 2629–2640 (1991).

    Article  CAS  Google Scholar 

  13. Yaffe, M. B. et al. Nature 358, 245–248 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Chen, X., Sullivan, D. S. & Huffaker, T. Proc. natn. Acad. Sci. U.S.A. 91, 9111–9115 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Vinh, D. B-N. & Drubin, D. G. Proc. natn. Acad. Sci. U.S.A. 91, 9116–9120 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Gao, Y. et al. J. Cell Biol. 125, 989–996 (1994).

    Article  CAS  Google Scholar 

  17. Viitanen, P. V. et al. J. biol. Chem. 267, 695–698 (1992).

    CAS  Google Scholar 

  18. Hartman, D. J., Hoogenraad, N. J., Condron, R. & Hoj, P. B. Proc. natn. Acad. Sci. U.S.A. 89, 3394–3398 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Schagger, H. & Von Jagow, G. Analyt. Biochem. 166, 368–379 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, G., Vainberg, I., Tap, W. et al. Specificity in chaperonin-mediated protein folding. Nature 375, 250–253 (1995). https://doi.org/10.1038/375250a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375250a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing