Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of transcription by Krüppel through interactions with TFIIB and TFIIEβ

Abstract

THE zinc-finger protein Krüppel (Kr)1 is an integral part of the Drosophila segmentation gene cascade2 and is essential in organo-genesis during later embryonic development3. In tissue culture, Kr regulates transcription4–9. Monomeric Kr can act as a transcrip-tional activator, whereas Kr dimers formed at high concentrations cause repression6. Here we show that Kr-dependent control of transcription involves functional interactions with components of the basal RNA polymerase II transcription machinery, which includes the initiation factors TFIIA, B, E, F, H and I (refs 10,11) as well as the TATA-binding protein (TBP) and TBP-associated factors (TAFs) contained in the multisubunit TFIID (ref. 12). Our results indicate that when acting from a site close to a basal promoter, monomeric Kr interacts with TFIIB to activate transcription, whereas an interaction of the Kr dimer with TFIIEβ, a subunit of TFIIE, results in transcriptional repression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rosenberg, U. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Ingham, P. W. Nature 335, 25–34 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Schmucker, D., Taubert, H. & Jäckle, H. Neuron 5, 1025–1039 (1992).

    Article  Google Scholar 

  4. Licht, J. D., Grossel, M. J., Figge, J. & Hansen, U. Nature 346, 76–79 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Sauer, F. & Jäckle, H. Nature 353, 563–565 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Sauer, F. & Jäckle, H. Nature 364, 454–457 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Zhuo, P. et al. Genes Dev. 5, 254–264 (1990).

    Article  Google Scholar 

  8. Small, S., Kraut, R., Hoey, T., Warrior, R. & Levine, M. Genes Dev. 5, 827–839 (1991).

    Article  CAS  Google Scholar 

  9. Licht, J. D., Ro, M., English, M. A., Grossel, M. J. & Hansen, U. Proc. natn. Acad. Sci. U.S.A. 90, 11361–11365 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Roeder, R. G. Trends biochem. Sci. 16, 402–407 (1991).

    Article  CAS  Google Scholar 

  11. Zawel, L. & Reinberg, D. Curr. Opin. Cell Biol. 4, 488–495 (1992).

    Article  CAS  Google Scholar 

  12. Hernandez, N. Genes Dev. 7, 1291–1308 (1993).

    Article  CAS  Google Scholar 

  13. Malik, S. et al. Proc. natn. Acad. Sci. U.S.A. 88, 9553–9557 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Sumimoto, H. et al. Nature 354, 401–404 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Sauer, F. thesis, Univ. Osnabrück, Germany (1993).

  16. Lin, Y. S. & Green, M. R. Cell 64, 971–981 (1991).

    Article  CAS  Google Scholar 

  17. Choy, B. & Green, M. R. Nature 366, 531–536 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Kim, T. K. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. (in the press).

  19. Horikoshi, M. et al. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  20. Stringer, K. F., Ingles, C. J. & Greenblatt, J. Nature 345, 783–786 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Goodrich, J. A., Hoey, T., Thut, C. J., Amon, A. & Tjian, R. Cell 75, 519–530 (1993).

    Article  CAS  Google Scholar 

  22. Lu, H., Zawel, L., Fischer, L., Egly, J.-M. & Reinberg, D. Nature 358, 841–845 (1992).

    Article  Google Scholar 

  23. Ohkuma, Y. & Roeder, R. G. Nature 368, 160–163 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Goodrich, J. A. & Tjian, R. Cell 77, 145–156 (1994).

    Article  CAS  Google Scholar 

  25. Stanojevic, D., Small, S. & Levine, M. Science 254, 1385–1387 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Studier, F. W. & Moffat, B. A. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  27. Hoffmann, A. & Roeder, R. G. Nucleic Acids Res. 19, 6337–6338 (1991).

    Article  CAS  Google Scholar 

  28. Lillie, J. W. & Green, M. R. Nature 338, 39–44 (1991).

    Article  ADS  Google Scholar 

  29. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  30. Han, K. & Manley, J. L. Genes Dev. 7, 491–563 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, F., Fondell, J., Ohkuma, Y. et al. Control of transcription by Krüppel through interactions with TFIIB and TFIIEβ. Nature 375, 162–164 (1995). https://doi.org/10.1038/375162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375162a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing