Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple defects and perinatal death in mice deficient in follistatin

Abstract

FOLLISTATIN, an activin-binding protein and activin antagonist in vitro1,2, can bind to heparan sulphate proteoglycans3 and may function in vivo to present activins to their receptors. In the mouse, follistatin messenger RNA is first detected in the deciduum (on embryonic day 5.5), and later in the developing hindbrain, somites, vibrissae, teeth, epidermis and muscle4–11. In Xenopus laevis, over-expression of follistatin leads to induction of neural tissue12. Here we use loss-of-function mutant mice to investigate the function of follistatin in mammals. We find that follistatin-deficient mice are retarded in then* growth, have decreased mass of the diaphragm and intercostal muscles, shiny taut skin, skeletal defects of the hard palate and the thirteenth pair of ribs, their whisker and tooth development is abnormal, they fail to breathe, and die within hours of birth. These defects are more widespread than those seen in activin-deficient mutant mice, indicating that follistatin may modulate the actions of several members of the transforming growth factor-β family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michel, V., Farnworth, P. & Findlay, J. K. Molec. cell. Endocr. 91, 1–11 (1993).

    Article  CAS  Google Scholar 

  2. Nakamura, T. et al. Science 247, 836–838 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Nakamura, T., Sugino, K., Titani, K. & Sugino, H. J. biol. Chem. 266, 19432–19437 (1991).

    CAS  PubMed  Google Scholar 

  4. van den Eijnden-van Raaij, A. J. M., Feijen, A., Lawson, K. A. & Mummery, C. L. Devl Biol. 154, 356–365 (1992).

    Article  CAS  Google Scholar 

  5. Albano, R. M., Arkell, R., Beddington, R. S. P. & Smith, J. C. Development 120, 803–813 (1994).

    CAS  PubMed  Google Scholar 

  6. Feijen, A., Goumans, M. J. & van den Eijnden-van Raaij, A. J. M. Development 120, 3621–3637 (1994).

    CAS  PubMed  Google Scholar 

  7. Roberts, V. J. & Barth, S. Endocrinology 134, 914–923 (1994).

    Article  CAS  Google Scholar 

  8. Shimasaki, S. et al. Mol. Endocrinology 3, 652–659 (1989).

    Article  Google Scholar 

  9. Michel, V., Albiston, A. & Findley, J. K. Biochem. biophys. Res. Commun. 173, 401–407 (1990).

    Article  CAS  Google Scholar 

  10. Michel, V., Rao, A. & Findlay, J. K. Biochem. biophys. Res. Commun. 180, 223–230 (1991).

    Article  CAS  Google Scholar 

  11. Tashiro, K. et al. Biochem. Biophys. Res. Commun. 174, 1022–1027 (1991).

    Article  CAS  Google Scholar 

  12. Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Cell 77, 283–295 (1994).

    Article  CAS  Google Scholar 

  13. Pierard-Franchimont, C. et al. J. Path. 167, 2223–2228 (1992).

    Article  Google Scholar 

  14. Chisaka, O., Musci, T. S. & Capecchi, M. R. Nature 335, 516–520 (1992).

    Article  ADS  Google Scholar 

  15. Matzuk, M. M. et al. Nature 374, 354–356 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Sellheyer, K. et al. Proc. natn. Acad. Sci. U.S.A. 90, 5237–5241 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Weiss, R. A., Eichner, R. & Sun, T.-T. J. Cell Biol. 98, 1397–1406 (1984).

    Article  CAS  Google Scholar 

  18. Hashimoto, M. et al. J. biol. Chem. 267, 7203–7206 (1992).

    CAS  PubMed  Google Scholar 

  19. Lopez-Casillas, F., Wrana, J. L. & Massague, J. Cell 73, 1435–1444 (1993).

    Article  CAS  Google Scholar 

  20. Kingsley, D. M. et al. Cell 71, 399–410 (1992).

    Article  CAS  Google Scholar 

  21. Matzuk, M. M., Finegold, M. J., Su, J-G. J., Hsueh, A. J. W. & Bradley, A. Nature 360, 313–319 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Ramirez-Solis, R. et al. Analyt. Biochem. 201, 331–335 (1992).

    Article  CAS  Google Scholar 

  23. Ramirez-Solis, R. et al. Cell 83, 279–294 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzuk, M., Lu, N., Vogel, H. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995). https://doi.org/10.1038/374360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing