Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily

Abstract

THE sequences of proteins from ancient organisms can be reconstructed from the sequences of their descendants by a procedure that assumes that the descendant proteins arose from the extinct ancestor by the smallest number of independent evolutionary events (‘parsimony’)1,2. The reconstructed sequences can then be prepared in the laboratory and studied3,4. Thirteen ancient ribonucleases (RNases) have been reconstructed as intermediates in the evolution of the RNase protein family in artiodactyls (the mammal order that includes pig, camel, deer, sheep and ox)5. The properties of the reconstructed proteins suggest that parsimony yields plausible ancient sequences. Going back in time, a significant change in behaviour, namely a fivefold increase in catalytic activity against double-stranded RNA, appears in the RNase reconstructed for the founding ancestor of the artiodactyl lineage, which lived about 40 million years ago6. This corresponds to the period when ruminant digestion arose in the artiodactyls, suggests that contemporary artiodactyl digestive RNases arose from a non-digestive ancestor, and illustrates how evolutionary reconstructions can help in the understanding of physiological function within a protein family7–9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pauling, I. & Zuckerkandl, E. Acta chem. scand. 17 (Suppl. 1), S9—S16 (1963).

  2. Fitch, W. M. Syst. Zool. 20, 406–416 (1971).

    Article  Google Scholar 

  3. Stackhouse, J., Presnell, S. R., McGeehan, G. M., Nambiar, K. P. & Benner, S. A. FEBS Lett. 262, 104–106 (1990).

    Article  CAS  Google Scholar 

  4. Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Nature 345, 86–89 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Carroll, R. L. Vertebrate Paleontology and Evolution (Freeman, New York, 1988).

    Google Scholar 

  6. Rose, K. D. Science 216, 621–623 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Nambiar, K. P. et al. Science 223, 1299–1301 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Adey, N. B., Tollefsbol, T. O., Sparks, A. B., Edgell, M. H. & Hutchinson, C. A. Proc. natn. Acad. Sci. U.S.A. 91, 1569–1573 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Hillis, D. M., Huelsenbeck, J. P. & Cunningham, C. W. Science 264, 671–677 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Soucek, J., Chudomel, V., Potmesilova, I. & Novak, J. T. Nat. Immun. Cell Growth Reg. 5, 250–258 (1986).

    CAS  Google Scholar 

  11. Matousek, J. Experientia 29, 858 (1973).

    Article  CAS  Google Scholar 

  12. Ardelt, W., Mikulski, S. & Shogen, K. J. biol. Chem. 266, 245–251 (1991).

    CAS  PubMed  Google Scholar 

  13. Strydom, D. J. et al. Biochemistry 24, 5486–5494 (1985).

    Article  CAS  Google Scholar 

  14. Okabe, Y. et al. J. Biochem. (Tokyo) 109, 786–790 (1991).

    Article  CAS  Google Scholar 

  15. Beintema, J. J., Fitch, W. M. & Carsana, A. Molec. Biol. Evol. 3, 262–275 (1986).

    CAS  PubMed  Google Scholar 

  16. Nambiar, K. P., Stackhouse, J., Presnell, S. R. & Benner, S. A. Eur. J. biochem. 163, 67–71 (1987).

    Article  CAS  Google Scholar 

  17. McGeehan, G. M. & Benner, S. A. FEBS Lett. 247, 55–56 (1989).

    Article  CAS  Google Scholar 

  18. Trautwein, K. & Benner, S. A. in Proc. Int. Symp. Site Directed Mutagenesis and Protein Engineering (ed. El-Gewely, M. R.) 53–61 (Elsevier, New York, 1991).

    Google Scholar 

  19. Blackburn, P. & Moore, S. The Enzymes 15, 317–434 (1982).

    Article  CAS  Google Scholar 

  20. Ipata, P. L. & Felicioli, R. A. FEBS Lett. 1, 29–31 (1968).

    Article  CAS  Google Scholar 

  21. Lang, K. & Schmidt, F. X. Eur. J. Biochem. 159, 275–281 (1986).

    Article  CAS  Google Scholar 

  22. Jolles, J. et al. J. molec. Evol. 28, 528–533 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Barnard, E. A. Nature 221, 340–344 (1969).

    Article  ADS  CAS  Google Scholar 

  24. Watanabe, H. et al. J. Biochem. (Tokyo) 104, 939–945 (1988).

    Article  CAS  Google Scholar 

  25. Libonati, M. & Floridi, A. Eur. J. Biochem. 8, 81–87 (1969).

    Article  CAS  Google Scholar 

  26. Graur, D. FEBS Lett. 325, 152–159 (1993).

    Article  CAS  Google Scholar 

  27. Ciglic, M. diplomarbeit, ETH Zürich (1994).

  28. Stevens, C. E. Comparative Physiology of the Vertebrate Digestive System (Cambridge Univ. Press, Cambridge, UK, 1988).

    Google Scholar 

  29. Sorrentino, S., Carsan̄a, A., Furia, A., Doskocil, J. & Libonati, M. Biochim. biophys. Acta 609, 40–52 (1980).

    Article  CAS  Google Scholar 

  30. Breukelman, H. J. et al. J. molec. Evol. 37, 29–35 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jermann, T., Opitz, J., Stackhouse, J. et al. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374, 57–59 (1995). https://doi.org/10.1038/374057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing