Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Blood flow changes in human somatosensory cortex during anticipated stimulation

Abstract

POSITRON emission tomography (PET) measurements of brain blood flow were used to monitor changes in the human primary and secondary somatosensory cortices during the period when somatosensory stimuli were expected. In anticipation of either focal or innocuous touching, or localized, painful shocks, blood flow decreased in parts of the primary somatosensory cortex map located outside the representation of the skin area that was the target of the expected stimulus. Specifically, attending to an impending stimulus to the fingers produced a significant decrease in blood flow in the somatosensory zones for the face, whereas attending to stimulation of the toe produced decreases in the zones for the fingers and face. Decreases were more prominent in the side ipsilateral to the location of the expected stimulus. No significant changes in blood flow occurred in the region of the cortex representing the skin locus of the awaited stimulation. These results are concurrent with a model of spatial attention in which potential signal enhancement may rely on generalized suppression of background activity1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Whang, K. C., Burton, H. & Shulman, G. L. Percept. Psychophys. 50, 157–165 (1991).

    Article  CAS  Google Scholar 

  2. Fox, P. T., Burton, H. & Raichle, M. E. J. Neurosurg. 67, 34–43 (1987).

    Article  CAS  Google Scholar 

  3. Nelson, R. J., Sur, M., Felleman, D. J. & Kaas, J. H. J. comp. Neurol. 192, 611–643 (1980).

    Article  CAS  Google Scholar 

  4. Spielberger, C. D., Gorsuch, R. L. & Lushene, R. E. Manual for the State-Trait Anxiety Inventory (Consulting Psychologists Press, Palo Alto, CA, 1970).

    Google Scholar 

  5. Drevets, W. C., Videen, T. O., MacLeod, A. K., Haller, J. W. & Raichle, M. E. Science 256, 1696 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Burton, H., Videen, T. O. & Raichle, M. E. Somatosens. Motor Res. 10, 297–308 (1993).

    Article  CAS  Google Scholar 

  7. Fox, P. T. & Mintun, M. A. J. nucl. Med. 30, 141–149 (1989).

    CAS  PubMed  Google Scholar 

  8. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain, 1–122 (Thieme, Stuttgart, 1988).

    Google Scholar 

  9. Roland, P. E. J. Neurophysiol. 46, 744–754 (1981).

    Article  CAS  Google Scholar 

  10. Chapin, J. K. & Woodward, D. J. Expl Neurol. 78, 654–669 (1982).

    Article  CAS  Google Scholar 

  11. Chapin, J. K. & Woodward, D. J. Expl Neurol. 78, 670–684 (1982).

    Article  CAS  Google Scholar 

  12. Chapman, C. E., Jiang, W. & Lamarre, Y. Expl Brain Res. 72, 316–334 (1988).

    Article  CAS  Google Scholar 

  13. Chapman, C. E. & Ageranioti-Bélanger, S. A. Expl Brain Res. 87, 319–339 (1991).

    Article  CAS  Google Scholar 

  14. Sinclair, R. J. & Burton, H. J. Neurophysiol. 66, 153–169 (1991).

    Article  CAS  Google Scholar 

  15. Posner, M. I. & Petersen, S. E. A. Rev. Neurosci. 13, 25–42 (1990).

    Article  CAS  Google Scholar 

  16. Coquery, J. M., Malcuit, G. & Coulmance, M. C. r. Soc. Biol. (Paris) 165, 1946–1951 (1971).

    CAS  Google Scholar 

  17. Coquery, J. M. in Active Touch (ed. Gordon, G.) 161–169 (Pergamon, Oxford, 1978).

    Google Scholar 

  18. Chapman, C. E. Bushnell, M. C., Miron, D., Duncan, G. H. & Lund, J. P. Expl Brain Res. 68, 516–524 (1987).

    Article  CAS  Google Scholar 

  19. Sathian, K. & Burton, H. Percept. Psychophys. 50, 237–248 (1991).

    Article  CAS  Google Scholar 

  20. Fox, P. T., Perlmutter, J. S. & Raichle, M. E. J. comput. assist. Tomogr. 9, 141–153 (1985).

    Article  CAS  Google Scholar 

  21. Herscovitch, P., Markham, J. & Raichle, M. E. J. nucl. Med. 14, 782–789 (1983).

    Google Scholar 

  22. Raichle, M. E., Martin, W. R. W., Herscovitch, P., Mintun, M. A. & Markham, J. J. nucl. Med. 24, 790–798 (1983).

    CAS  PubMed  Google Scholar 

  23. Fox, P. T., Mintun, M. A., Reiman, E. M. & Raichle, M. E. J. cerebral Blood Flow Metab. 8, 642–653 (1988).

    Article  CAS  Google Scholar 

  24. Yamamoto, M., Ficke, D. C. & Jer-Pogossian, M. IEEE Trans. nucl. Sci. 29, 529–533 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drevets, W., Burton, H., Videen, T. et al. Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature 373, 249–252 (1995). https://doi.org/10.1038/373249a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373249a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing