Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line

Abstract

The nematode Caenorhabditis elegans has two sexes, males and hermaphrodites. Hermaphrodites initially produce sperm but switch to producing oocytes. This switch appears to be controlled by the 3′ untranslated region of fem-3 messenger RNA. We have now identified a binding factor (FBF) which is a cytoplasmic protein that binds specifically to the regulatory region of fem-3 3′UTR and mediates the sperm/oocyte switch. The RNA-binding domain of FBF consists of a stretch of eight tandem repeats and two short flanking regions. This structural element is conserved in several proteins including Drosophila Pumilio, a regulatory protein that controls pattern formation in the fly by binding to a 3′UTR. We propose that FBF and Pumilio are members of a widespread family of sequence-specific RNA-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypes and gain-of-function alleles of fem-3.
Figure 2: Isolation and sequence of FBF-1 and FBF-2.
Figure 3: fbf mRNA and protein.
Figure 6: A family of related proteins containing multiple Puf repeats.
Figure 4: Tests of fbf function.
Figure 5: Positioning fbf in the sex determination pathway.
Figure 7: Comparison of regulation by FBF and Pumilio.

Similar content being viewed by others

References

  1. Wickens, M., Kimble, J. & Strickland, S. in Translational Control (eds Hershey, J., Mathews, M. & Sonenberg, N.) 411–450 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1996)).

    Google Scholar 

  2. Sonenberg, N. mRNA translation: influence of the 5′ and 3′ untranslated regions. Curr. Opin. Genet. Dev. 4, 310–315 (1994).

    Article  CAS  Google Scholar 

  3. Beelman, C. A. & Parker, R. Degradation of mRNA in eukaryotes. Cell 81, 179–183 (1995).

    Article  CAS  Google Scholar 

  4. Wickens, M., Anderson, P. & Jackson, R. Life and death in the cytoplasm: messages from the 3′ end. Curr. Opin. Genet. Dev. 7, 220–232 (1997).

    Article  CAS  Google Scholar 

  5. Singer, R. RNA zipcodes for cytoplasmic addresses. Curr. Biol. 3, 719–721 (1993).

    Article  CAS  Google Scholar 

  6. Curtis, D., Lehmann, R. & Zamore, P. D. Translational regulation and development. Cell 81, 171–178 (1995).

    Article  CAS  Google Scholar 

  7. Anderson, P. & Kimble, J. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Preiss, J. R.) 185–208 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1997)).

    Google Scholar 

  8. St Johnston, D. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    Article  CAS  Google Scholar 

  9. Macdonald, P. & Smibert, C. A. Translational regulation of maternal mRNAs. Curr. Opin. Gen. Dev. 6, 403–407 (1996).

    Article  CAS  Google Scholar 

  10. Wharton, R. Regulated expression from maternal mRNAs in Drosophila. Sem Dev. Biol. 3, 391–397 (1992).

    Google Scholar 

  11. St Johnston, D. The intracellular localization of messenger RNAs. Cell 81, 161–170 (1995).

    Article  CAS  Google Scholar 

  12. Gebauer, R. & Richter, J. Synthesis and function of Mos: the control switch of vertebrate oocyte meiosis. BioEssays 19, 23–28 (1997).

    Article  CAS  Google Scholar 

  13. Goodwin, E. B., Okkema, P. G., Evans, T. C. & Kimble, J. Translational regulation of tra-2 by its 3′ untranslated region controls sexual identity in C. elegans. Cell 75, 329–339 (1993).

    Article  CAS  Google Scholar 

  14. Ahringer, J. & Kimble, J. Control of the sperm–oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature 349, 346–348 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Hodgkin, J. Sex determination in the nematode C. elegans : analysis of tra-3 suppressors and characterization of fem genes. Genetics 114, 15–52 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barton, M. K., Schedl, T. B. & Kimble, J. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics 115, 107–119 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahringer, J., Rosenquist, T. A., Lawson, D. N. & Kimble, J. The Caenorhabditis elegans sex determining gene fem-3 is regulated post-transcriptionally. EMBO J. 11, 2303–2310 (1992).

    Article  CAS  Google Scholar 

  18. Ahringer, J. Post-transcriptional regulation of fem-3, a sex-determining gene of C. elegans. Ph.D. thesis, University of Wisconsin-Madison((1991)).

  19. SenGupta, D. et al. Athree-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl Acad. Sci. USA 93, 8496–8501 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Murata, Y. & Wharton, R. Binding of Pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80, 747–756 (1995).

    Article  CAS  Google Scholar 

  21. Waterston, R. H., Sulston, J. E. & Coulson, A. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. ) 23–45 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1997)).

    Google Scholar 

  22. Austin, J. & Kimble, J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589–599 (1987).

    Article  CAS  Google Scholar 

  23. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  Google Scholar 

  24. Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  Google Scholar 

  25. Ward, S., Roberts, T., Strome, S., Pavalko, F. & Hogan, E. Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins. J. Cell Biol. 102, 1778–1786 (1986).

    Article  CAS  Google Scholar 

  26. Meyer, B. J. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. ) 209–240 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1997)).

    Google Scholar 

  27. Shedl, T. & Kimble, J. fog-2, a germ-line specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics 119, 43–61 (1988).

    Google Scholar 

  28. Hodgkin, J. More sex-determination mutants of Caenorhabditis elegans. Genetics 96, 649–664 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, X.-d. The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Valcarcel, J. & Green, M. The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci. 21, 296–301 (1996).

    Article  CAS  Google Scholar 

  31. Macdonald, P. The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114, 221–232 (1992).

    CAS  PubMed  Google Scholar 

  32. Barker, D., Wang, C., Moore, J., Dickinson, L. & Lehmann, R. Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev. 6, 2312–2326 (1992).

    Article  CAS  Google Scholar 

  33. Graham, P. L. & Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics 133, 919–931 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Graham, P. L., Schedl, T. & Kimble, J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev. Genet. 14, 471–484 (1993).

    Article  CAS  Google Scholar 

  35. Schedl, T., Graham, P. L., Barton, M. K. & Kimble, J. Analysis of the role of tra-1 in germline sex determination in the nematode Caenorhabditis elegans. Genetics 123, 755–769 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Coglievina, M., Bertani, I., Klima, R., Zaccaria, P. & Bruschi, C. The DNA sequence of a 7941 bp fragment of the left arm of chromosome VII of Saccharomyces cerevisiae contains four open reading frames including the multicopy suppressor gene of the pop2 mutation and a putative serine/threonine protein kinase gene. Yeast 11, 767–774 (1995).

    Article  CAS  Google Scholar 

  37. Zamore, P., Williamson, J. & Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding protein. RNA (in the press).

  38. Birney, E., Kumar, S. & Krainer, A. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21, 5803–5816 (1993).

    Article  CAS  Google Scholar 

  39. Nagai, K., Oubridge, C., Ito, N., Avis, J. & Evans, P. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem. Sci. 20, 235–240 (1995).

    Article  CAS  Google Scholar 

  40. Wharton, R. P. & Struhl, G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67, 955–967 (1991).

    Article  CAS  Google Scholar 

  41. Curtis, D. et al. ACCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J. 16, 834–843 (1997).

    Article  CAS  Google Scholar 

  42. Lehmann, R. & Nüsslein-Volhard, C. The maternal gene nanos has a central role in posterior pattern formation in the Drosophila embryo. Development 112, 679–691 (1991).

    CAS  PubMed  Google Scholar 

  43. Wang, C., Dickinson, L. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev. Dynam. 199, 103–115 (1994).

    Article  CAS  Google Scholar 

  44. Fitch, D. H. A. & Thomas, W. K. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. ) 815–850 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1997)).

    Google Scholar 

  45. Crittenden, S. L., Troemel, E. R., Evans, T. C. & Kimble, J. GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120, 2901–2911 (1994).

    CAS  PubMed  Google Scholar 

  46. Hodgkin, J. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 881–1047 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1997)).

    Google Scholar 

Download references

Acknowledgements

We thank R. Lehmann, C. Mello, J. Priess, R. Wharton and J. Williamson for communicating results before publication and for discussion; P. Anderson for comments on the manuscript; R. Barstead for C. elegans cDNA libraries; A. Coulson for YAC grids; the C. elegans sequencing consortium for unpublished genomic sequences; S. Ward for anti-sperm antibodies; and U.W. Biochemistry Media Laboratory for help with preparing the figures. DNA sequencing was performed at the UW Biotechnology Center. This work was supported by grants from the NIH to J.K. and M.W., from the NSF Science and Technology Center (Seattle) to S.F. and M.W., and by EMBO and Fonds National Suisse fellowships to A.P., J.K. and S.F. are investigators with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin P. Wickens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Gallegos, M., Puoti, A. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997). https://doi.org/10.1038/37297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37297

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing