Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the human ADP-ribosylation factor 1 complexed with GDP

Abstract

ADP-ribosylation factors (ARFs) are essential and ubiquitous in eukaryotes, being involved in vesicular transport and functioning as an activator of phospholipase D (refs 1,2) and cholera toxin3,4. The functions of ARF proteins in membrane traffic and organelle integrity5,6 are intimately tied to its reversible association with membranes and specific interactions with membrane phospholipids. One common feature of these functions is their regulation by the binding and hydrolysis of GTP. Here we report the three-dimensional structure of full-length human ARF1 (Mr 21,000) in its GDP-bound non-myristoylated form. The presence of a unique amino-terminal α-helix and loop, together with differences in Mg2+ ligation and the existence of a non-crystallographic dimer, set this structure apart from other GTP-binding proteins. These features provide a structural basis for the GTP-dependent modulation of membrane affinity, the lack of intrinsic GTPase activity, and the nature of effector binding surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, H. A. et al. Cell 75, 1137–1144 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Cockcroft, S. et al. Science 263, 523–526 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kahn, R. A., Yucel, J. K. & Malhotra, V. Cell 75, 1045–1048 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Rosenwald, A. G. & Kahn, R. A. in GTPase-controlled Molecular Machines (eds Corda, D., Hamm, H. & Luini, A., Ares-Serono publications, Rome, Italy, 1994).

    Google Scholar 

  5. Zhang, C.-J. et al. J. Cell Biol. 124, 289–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Kahn, R. A. et al. J. biol. Chem. (in the press).

  7. Tong, L., DeVos, A. M., Milburn, M. V. & Kim, S.-H. J. molec. Biol. 217, 503–516 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Seuell, J. L. & Kahn, R. A. Proc. natn. Acad. Sci. U.S.A. 85, 4620–4624 (1988).

    Article  ADS  Google Scholar 

  9. Lambert, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Nature 369, 621–628 (1994).

    Article  ADS  Google Scholar 

  10. Kjeldgaard, M. & Nyborg, J. J. molec. Biol. 223, 721–742 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Barbacid, M. A. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  12. Kahn, R. A. et al. J. biol. Chem. 267, 13039–13046 (1992).

    CAS  PubMed  Google Scholar 

  13. Kahn, R. A., Goddard, C. & Newkirk, M. J. biol. Chem. 263, 8282–8287 (1988).

    CAS  PubMed  Google Scholar 

  14. Kahn, R. A. & Gilman, A. G. J. biol. Chem. 261, 7906–7911 (1986).

    CAS  PubMed  Google Scholar 

  15. Kahn, R. A., Kern, F. G., Clark, J., Gelmann, E. P. & Rulka, C. J. biol. Chem. 266, 2606–2614 (1991).

    CAS  PubMed  Google Scholar 

  16. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Nature 371, 37–43 (1991).

    Article  ADS  Google Scholar 

  17. Frech, M. et al. Biochemistry 33, 3237–3244 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Weiss, O., Holden, J., Rulka, C. & Kahn, R. A. J. biol. Chem. 264, 21066–21072 (1989).

    CAS  PubMed  Google Scholar 

  19. Marshall, M. S. Trends Biochem. Sci. 18, 250–254 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Dickerson, R. E., Weizerl, J. E. & Palmer, R. A. Acta crystallogr. B24, 997–1003 (1968).

    Article  CAS  Google Scholar 

  21. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, K. Y. J. Acta crystallogr. D49, 213–222 (1993).

    CAS  Google Scholar 

  23. Jones, T. A. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  24. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Nature 347, 37–44 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Brunger, A. T. X-PLOR Version 3.1 Manual (Yale University, New Haven, 1993).

    Google Scholar 

  26. Fontano, E. & Peisach, D. peisach@auriga.rose.brandeis.edu, RAYSCRIPT.

  27. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. RAYSHADE, obtained from Coffin, L. & DeBry, D.; (Icoffin@clciris.chem.umr.edu and ddebry@ dsd.es.com).

  29. QUANTA 4.0 Molecular Simulations Inc., Burlington, Massachusetts, USA.

  30. CSC ChemDraw 3.1, Cambridge Scientific Computing, Inc., Cambridge, Massachusetts, USA.

  31. Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin, USA.

  32. John, J., Schlichting, I., Schiltz, E., Rosch, P. & Wittinghofer, A. J. biol. Chem. 264, 13086–13092 (1989).

    CAS  PubMed  Google Scholar 

  33. Halkides, C. J., Farrar, C. T., Larsen, R. G., Redfield, A. G. & Singel, D. J. Biochemistry 33, 4019–4035 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlos Amor, J., Harrison, D., Kahn, R. et al. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994). https://doi.org/10.1038/372704a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372704a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing