Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface spectroscopy with high spatial resolution using metastable atoms

Abstract

THE study of surface phenomena is in large part dependent on spectroscopic techniques that are sensitive to only the outermost few layers of the material under consideration. A variety of such techniques are now available, some of which also have the benefit of high spatial resolution1–3. Here we show that metastable atoms—that is, atoms in long-lived excited states—can be used as a sensitive surface probe with high spatial resolution. In contrast to electrons or photons, metastable atoms cannot penetrate into a solid; instead, they are de-excited readily following interaction with the surface electronic orbitals4,5. The de-excitation process is accompanied by the emission of electrons, the energy spectrum of which provides fundamental information about the electronic properties of the surface. High spatial resolution (in the present case, about 5 μm) is achieved by detecting electrons that have been emitted from only a small area of the sample. As the metastable atoms have only thermal kinetic energies, they are essentially nondestructive, making them ideally suited to probing fragile surfaces such as organic layers and biological specimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turner, D. W. Chem. in Britain 25, 797–800 (1989).

    CAS  Google Scholar 

  2. Griffith, O. H., Habliston, P. A. & Birrel, G. B. Ultramicroscopy 36, 262–274 (1991).

    Article  CAS  Google Scholar 

  3. Munakata, T., Ishikawa, E., Kinoshita, I. & Kasuya, T. Rev. Sci. Instrum. 62, 2572–2578 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Conrad, H., Ertl, G., Küppers, J. & Wang, S. W. Phys. Rev. Lett. 42, 1082–1086 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Munakata, T., Ohno, K. & Harada, Y. J. chem. Phys. 72, 2880–2881 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Plummer, I. R. et al. Nature 303, 599–601 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Hagstrum, H. D. Phys. Rev. Lett. 43, 1050–1053 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Harada, Y. & Ozaki, H. Jap. J. appl. Phys. 26, 1201–1214 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Ohno, K. & Harada, Y. in Theoretical Models of Chemical Bonding (ed. Maksic, Z. B.) Part 3 (Springer, Berlin, 1991).

    Google Scholar 

  10. Swan, A., Marynowski, M., Franzen, W., El-Batanouny, M. & Martini, K. M. Phys. Rev. Lett. 71, 1250–1253 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Telieps, W. & Bauer, E. Ultramicroscopy 17, 57–66 (1985).

    Article  CAS  Google Scholar 

  12. Leasure, E. L., Mueller, C. R. & Ridley, T. Y. Rev. Sci. Instrum. 46, 635–637 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Fahey, D. W., Parks, W. F. & Schearer, L. D. J. Phys. E13, 381–383 (1980).

    ADS  Google Scholar 

  14. Masuda, S., Hayashi, H. & Harada, Y. Phys. Rev. B42, 3582–3585 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Masuda, S., Hayashi, H. & Harada, Y. J. Electron Spectrosc. Relat. Phenom. 51, 167–171 (1990).

    Article  CAS  Google Scholar 

  16. Pasinszki, T. et al. J. phys. Chem. (submitted).

  17. Höchst, H., Goldmann, A., Hüfner, S. & Malter, H. Phys. Status Solidi B76, 559–568 (1976).

    Article  Google Scholar 

  18. Battye, F. L., Goldmann, A. & Kasper, L. Phys. Status Solidi B80, 425–432 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, Y., Yamamoto, S., Aoki, M. et al. Surface spectroscopy with high spatial resolution using metastable atoms. Nature 372, 657–659 (1994). https://doi.org/10.1038/372657a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372657a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing