Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prediction of crystal–melt partition coefficients from elastic moduli

Abstract

MANY geochemical processes, such as crystallization of silicate magmas or planetary differentiation, require a knowledge of the way in which elements become partitioned between coexisting crystal and liquid phases1,2. But quantitative prediction of crystal/melt partition coefficients from thermodynamic principles has not previously been possible. By studying the partitioning of 15 elements between silicate minerals and their coexisting melts, we show here that the partitioning behaviour of any series of isovalent cations can be rationalized in terms of a simple model in which the size and elasticity of the crystal lattice sites play a critical role. We find that elasticity varies linearly with the formal charge of the cation. This model allows us to predict element partitioning behav-iour solely from the physical characteristics of the cation sites in the crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Irving, A. J. Geochim. cosmochim. Acta 42, 743–770 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Henderson, P. Inorganic Geochemistry (Pergamon, Oxford, 1982).

    Google Scholar 

  3. Beattie, P. D. et al. Geochim. cosmochim. Acta 57, 1605–1606 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Takahashi, E. & Irvine, T. N. Geochim. cosmochim. Acta 45, 1181–1185 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Jones, J. H. & Burnett, D. S. Geochim. cosmochim. Acta 51, 769–782 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Nagasawa, H. Science 152, 767–769 (1966).

    Article  ADS  CAS  Google Scholar 

  7. Tsang, T., Philpotts, J. A. & Yin, L. J. Phys. Chem. Solids 39, 439–442 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Brice, J. C. J. Crystal Growth 28, 249–253 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Blundy, J. D. & Wood, B. J. Geochim. cosmochim. Acta 55, 193–209 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Blundy, J. D. & Wood, B. J. Mineralog. Mag. 58A, 101–102 (1994).

    Article  ADS  Google Scholar 

  11. Beattie, P. Mineralog. Mag. 58A, 63–64 (1994).

    Article  ADS  Google Scholar 

  12. Onuma, N., Higuchi, H., Wakita, H. & Nagasawa, H. Earth planet. Sci. Lett. 5, 47–51 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Jensen, B. B. Geochim. cosmochim. Acta 37, 2227–2242 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Mackrodt, W. C. in Computer Simulation of Solids (eds Catlow, C. R. A. & Mackrodt, W. C.), Lecture Notes in Physics 166, 175–194 (Springer, Berlin, 1982).

    Google Scholar 

  15. Catlow, C. R. A., James, D., Mackrodt, W. C. & Stewart, R. F. Phys. Rev. B25, 1006–1026 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Smith, J. V. & Brown, W. L. Feldspar Minerals 1. Crystal Structures, Physical, Chemical and Microtextural Properties (Springer, Berlin, 1988).

    Google Scholar 

  17. Smyth, J. R. & Bish, D. L. Crystal Structures and Cation Sites of the Rock Forming Minerals (Allen & Unwin, Boston, 1988).

    Google Scholar 

  18. Hart, S. R. & Dunn, T. Contr. Miner. Petrol. 113, 1–8 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Liu, C. Q., Masuda, A., Shimizu, H., Takahashi, K. & Xie, G. H. Geochim. cosmochim. Acta 56, 1523–1530 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Levien, L. & Prewitt, C. T. Am. Miner. 66, 315–323 (1981).

    CAS  Google Scholar 

  21. Angel, R. J., Hazen, R. M., McCormick, T. C., Prewitt, C. T. & Smyth, J. R. Phys. Chem. Miner. 15, 313–318 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Anderson, D. L. & Anderson, O. L. J. geophys. Res. 75, 3494–3500 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Hazen, R. M. & Finger, L. W. J. geophys. Res. 84, 6723–6728 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Rubin, K. H. & Macdougall, J. D. Nature 335, 158–161 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Jones, J. H. in Handbook of Geophysical Constants (ed. Ahrens, T. J.) Vol. 3, Ch. 7 (American Geophysical Union, Washington, in the press).

  26. Sumino, Y. & Anderson, O. L. in Handbook of Physical Properties of Rocks (ed. Carmichael, R. S.) Vol. 3, 39–138 (Chemical Rubber Company, Boca Raton, 1989).

    Google Scholar 

  27. Kato, T., Ringwood, A. E. & Irifune, T. Earth planet. Sci. Lett. 90, 65–68 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Drake, M. J., McFarlane, E. A., Gasparik, T. & Rubie, D. C. J. geophys. Res. 98, 5427–5431 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Agee, C. B. Nature 346, 834–837 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Burns, R. G. Mineratogical Applications of Crystal Field Theory (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  31. Shannon, R. D. Acta crystallogr. A32, 751–767 (1976).

    Article  Google Scholar 

  32. Hinton, R. W. Chem. Geol. 83, 11–25 (1990).

    Article  ADS  CAS  Google Scholar 

  33. McKay, G., Wagstaff, J. & Tang, S. R. Geochim. cosmochim. Acta 50, 927–937 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Grutzeck, M., Kriedelbaugh, S. & Weill, D. F. Geophys. Res. Lett. 1, 273–275 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blundy, J., Wood, B. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454 (1994). https://doi.org/10.1038/372452a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372452a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing