Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Indirect influence of ozone depletion on climate forcing by clouds

Abstract

CHEMICAL depletion of ozone in the lower stratosphere decreases the direct radiative forcing from greenhouse gases in the atmosphere1. Here we show that ozone depletion may also exert an indirect effect on radiative forcing via its effect on the oxidation state of the atmosphere. Hydroxyl (OH) radicals in the troposphere are produced by photodissociation of tropospheric ozone in the presence of water vapour, and this process is enhanced if the absorption of ultraviolet radiation by the overlying stratospheric ozone column decreases. As OH oxidizes SO2to sulphuric acid, which then forms cloud condensation nuclei2, variations in tropospheric OH concentration can influence cloud albedo. We use a global two-dimensional model forced by observed changes in stratospheric ozone to calculate the consequent changes in production of sulphuric acid over the past decade, and thus to estimate the effect on cloud albedo. We find that this indirect effect of ozone depletion may decrease radiative forcing (via increased cloud reflectivity) by at least as much as the direct effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ramaswamy, V., Schwarzkopf, M. D. & Shine, K. P. Nature 355, 810–812 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Lin, X. et al. J. geophys. Res. 97, 18161–18171 (1992).

    Article  ADS  Google Scholar 

  4. Raes, F. & Van Dingen, R. J. geophys. Res. 97, 12901–12912 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Charlson, R. J. et al. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Law, K. S. & Pyle, J. A. J. geophys. Res. 98, 18377–18400 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Law, K. S. & Pyle, J. A. J. geophys. Res. 98, 18401–18412 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Hough, A. M. J. geophys. Res. 96, 7325–7362 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Bates, T. S. et al. J. atmos. Chem. 14, 315–337 (1992).

    Article  CAS  Google Scholar 

  10. Toumi, R. Geophys. Res. Lett. 21, 117–120 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Langner, J., Rodhe, H., Crutzen, P. J. & Zimmerman, P. Nature 359, 712–716 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Langner, J., Rodhe, H. & Olofsson, M. J. geophys. Res. 95, 13691–13706 (1990).

    Article  ADS  Google Scholar 

  13. Gleason, J. F. et al. Science 360, 523–526 (1993).

    Article  ADS  Google Scholar 

  14. Kerr, J. B. & McElroy, C. T. Science 262, 1032–1034 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Liu, S. C. & Trainer, M. J. atmos. Chem. 6, 221–233 (1988).

    Article  CAS  Google Scholar 

  16. Thompson, A. M. J. geophys. Res. 96, 13089–13089 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Madronich, S. & Granier, C. Geophy. Res. Lett. 19, 465–467 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Hegg, D. A., Radke, L. R. & Hobbs, P. V. J. geophys. Res. 96, 18727–18773 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Lawrence, M. G. J. geophys. Res. 98, 20663–20673 (1993).

    Article  ADS  Google Scholar 

  20. Ackerman, A. S., Toon, O. B. & Hobbs, P. V. Nature 367, 445–447 (1994).

    Article  ADS  Google Scholar 

  21. Radke, L. F., Coakley, J. A. & King, M. D. Science 246, 1146–1148 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Kaufman, Y. J. & Tanre, D. Nature 369, 45–48 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Boucher, O. & Rodhe, H. Report CM-83 (Int. Met. Inst., Univ. Stockholm, 1994).

  24. Berresheim, H. et al. J. geophys. Res. 98, 12701–12711 (1993).

    Article  ADS  Google Scholar 

  25. Bekki, S., Law, K. S. & Pyle, J. A. Nature 371, 595–597 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Gupta, S. K. et al. J. geophys. Res. 98, 20761–20778 (1993).

    Article  ADS  Google Scholar 

  27. Jaenicke, R. et al. Tellus 44B, 311–317 (1992).

    Article  ADS  Google Scholar 

  28. Del Genio, A. D., Lacis, A. A. & Ruedy, R. A. Nature 251, 382–385 (1991).

    Google Scholar 

  29. Luria, M. & Sievering, H. Atmos. Envir. 25A, 1489–1496 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Lelieveld, J., Crutzen, P. J. & Rodhe, H. Report CM-76 (Int. Met. Inst, Univ. Stockholm, 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toumi, R., Bekki, S. & Law, K. Indirect influence of ozone depletion on climate forcing by clouds. Nature 372, 348–351 (1994). https://doi.org/10.1038/372348a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372348a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing