Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs

Abstract

THE appendage primordia of Drosophila are subdivided into compartments1–4 by the localized expression of transcription factors5–7. Interaction between cells in adjacent compartments establishes organizing centres responsible for generating spatial pattern and promoting cell proliferation in the developing appendages7–9. Localized expression of hedgehog (hh) in the pos-terior compartment of the leg imaginal disc directs expression of wingless (wg) in ventral–anterior cells and decapentaplegic (dpp) in dorsal–anterior cells near the anterior–posterior compartment boundary8; wg then acts to specify ventral cell fate10–12 and to organize the dorsal–ventral axis of the leg13,14. Interaction between wg-expressing ventral cells and dorsal cells near the anterior–posterior compartment boundary promotes axis formation in the leg14,15. Here we show that the combined action of wg-expressing cells in the ventral–anterior compartment and dpp-expressing cells in the dorsal–anterior compartment activates expression of Distalless, a gene required for proximal–distal axis formation in the limbs. These results demonstrate that sequential interaction between anterior–posterior and dorsal–ventral compartments establishes the proximal–distal axis of the limbs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garcia-Bellido, A., Ripoll, P. & Morata, G. Nature New Biol. 245, 251–253 (1973).

    Article  CAS  Google Scholar 

  2. Morata, G. & Lawrence, P. A. Nature 255, 614–617 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Lawrence, P. A. & Morata, G. Devl Biol. 50, 321–337 (1976).

    Article  CAS  Google Scholar 

  4. Kornberg, T. Proc. natn. Acad. Sci. U.S.A. 78, 1095–1099 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Kornberg, T., Siden, I., O'Farrell, P. & Simon, M. Cell 40, 45–53 (1985).

    Article  CAS  Google Scholar 

  6. DiNardo, S., Kuner, J. M., Theis, J. & O'Farrell, P. H. Cell 43, 59–69 (1985).

    Article  CAS  Google Scholar 

  7. Diaz-Benjumea, F. J. & Cohen, S. M. Cell 75, 741–752 (1993).

    Article  CAS  Google Scholar 

  8. Basler, K. & Struhl, G. Nature 368, 208–214 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Williams, J. A., Paddock, S. W., Vorwerk, K. & Carroll, S. B. Nature 368, 299–305 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Baker, N. E. Devl Biol. 125, 96–108 (1988).

    Article  CAS  Google Scholar 

  11. Peifer, M., Rauskolb, C., Williams, M., Riggleman, B. & Wieschaus, E. Development 111, 1029–1043 (1991).

    CAS  Google Scholar 

  12. Couso, J. P., Bate, M. & Martinez-Arias, A. Science 259, 484–489 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Stohl, G. & Basler, K. Cell 72, 527–540 (1993).

    Article  Google Scholar 

  14. Diaz-Benjumea, F. J. & Cohen, S. M. Development 120, 1661–1670 (1994).

    CAS  Google Scholar 

  15. Campbell, G., Weaver, T. & Tomlinson, A. Cell 74, 1113–1123 (1993).

    Article  CAS  Google Scholar 

  16. Cohen, S. M., Brönner, G., Küttner, F., Jürgens, G. & Jäckle, H. Nature 338, 432–434 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Sunkel, C. E. & Whittle, J. R. S. Wilhelm Roux Arch. dev. Biol. 196, 124–132 (1987).

    Article  Google Scholar 

  18. Cohen, S. M. & Jürgens, G. EMBO J. 8, 2045–2055 (1989).

    Article  CAS  Google Scholar 

  19. Cohen, S. M. & Jürgens, G. Wilhelm Roux Arch. dev. Biol. 198, 157–169 (1989).

    Article  Google Scholar 

  20. Cohen, B., Simcox, A. A. & Cohen, S. M. Development 117, 597–608 (1993).

    CAS  Google Scholar 

  21. Schubiger, G. Wilhelm Roux Arch. EntwMech. Org. 160, 9–40 (1968).

    Article  Google Scholar 

  22. Masucci, J. D., Miltenberger, R. J. & Hoffman, F. M. Genes Dev. 4, 2011–2023 (1990).

    Article  CAS  Google Scholar 

  23. Raftery, L. A., Sanicola, M., Blackman, R. K. & Gelbart, W. M. Development 113, 27–33 (1991).

    CAS  Google Scholar 

  24. Spencer, F., Hoffman, M. & Gelbart, W. M. Cell 28, 451–461 (1982).

    Article  CAS  Google Scholar 

  25. Tabata, T. & Kornberg, T. Cell 76, 89–102 (1994).

    Article  CAS  Google Scholar 

  26. Meinhardt, H. Devl Biol. 96, 375–385 (1983).

    Article  CAS  Google Scholar 

  27. Vachon, G. et al. Cell 71, 437–450 (1992).

    Article  CAS  Google Scholar 

  28. St. Johnston, R. D. et al. Genes Dev. 4, 1114–1127 (1990).

    Article  CAS  Google Scholar 

  29. Blackman, R. K., Sanicola, M., Raftery, L. A., Gillevet, T. & Gelbart, W. M. Development 111, 657–665 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Benjumea, F., Cohen, B. & Cohen, S. Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature 372, 175–179 (1994). https://doi.org/10.1038/372175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing