Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Trithorax-like gene encodes the Drosophila GAGA factor

Abstract

LITTLE is known about the way higher-order chromatin structure influences gene expression and chromosome topology in general. Genetic analysis in Drosophila has led to the discovery of two classes of genes, the regulators of homeotic genes and the modifiers of position-effect variegation, which seem to be good candidates for encoding some of the factors regulating chromatin functions1,2. The Trithorax-like gene we describe here is required for the normal expression of the homeotic genes and is a modifier of position-effect variegation. We found that Trithorax-like encodes the GAGA factor which is involved in the formation of an accessible chromatin structure at promoter sequences3. Our genetic analysis suggests that the chromatin modelling function of the GAGA factor is not restricted to promoter regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paro, R. Trends Genet. 6, 416–421 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Reuter, G. & Spierer, P. BioEssays 14, 605–612 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Tsukiyama, T., Becker, P. & Wu, C. Nature 367, 525–532 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ingham, P. W. Wilhelm Roux Arch. dev. Biol. 190, 365–369 (1981).

    Article  CAS  Google Scholar 

  6. Shearn, A. Genetics 121, 517–525 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Celniker, S. E., Sharma, S., Keelan, D. J. & Lewis, E. B. EMBO J. 9, 4277–4286 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dorn, R. et al. Genetics 133, 279–290 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Soeller, W. C., Euk Oh, C. & Kornberg, T. B. Molec. cell. Biol. 13, 7961–7970 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biggin, M. & Tijian, R. Cell 53, 699–711 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Gilmour, D., Thomas, G. & Elgin, S. C. Science 245, 1487–1490 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Soeller, W. C., Poole, S. J. & Kornberg, T. Genes Dev. 2, 68–81 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Thummel, C. Genes Dev. 6, 2635–2645 (1989).

    Google Scholar 

  14. Read, D., Nishigaki, T. & Manley, J. L. Molec. cell. Biol. 10, 4334–4344 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerrigan, L. A., Croston, G. E., Lira, L. M. & Kadonaga, J. T. J. biol. Chem. 266, 574–582 (1991).

    CAS  PubMed  Google Scholar 

  16. Harrison, S. H. & Travers, A. A. EMBO J. 9, 207–216 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chi, H. C., Juminaga, D., Wang, S. Y. & Hui, C. F. Molec. cell. Biol. 10, 451–466 (1991).

    CAS  Google Scholar 

  18. Lee, J., Kraus, W., Wolfner, M. F. & Lis, J. Genes Dev. 6, 284–295 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, Q., Wallrath, L. L., Granok, H. & Elgin, S. C. Molec. cell. Biol. 13, 2802–2814 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Croston, G. E., Kerrington, L. A., Lira, L. M., Marshak, D. R. & Kadonaga, J. T. Science 251, 643–649 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. DiBello, P. R., Withers, D. A., Bayer, C. A., Fristrom, J. W. & Guild, G. M. Genetics 129, 385–397 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Godt, D., Couderc, J. L., Cramton, S. E. & Laski, F. A. Development 119, 799–812 (1993).

    CAS  PubMed  Google Scholar 

  23. Xue, F. & Cooley, L. Cell 72, 681–693 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Dorn, R., Reuter, G. & Saumweber, H. Proc. natn. Acad. Sci. U.S.A. 90, 11376–13380 (1994).

    Article  ADS  Google Scholar 

  25. Duncan, I. Genetics 102, 49–70 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Galloni, M., Gyurkovics, H., Schedl, P. & Karch, F. EMBO J. 12, 1087–1097 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, N. & Kafatos, N. J. molec. Biol. 203, 425–437 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, G., Gausz, J., Galloni, M. et al. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371, 806–808 (1994). https://doi.org/10.1038/371806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371806a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing