Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Path of magnetic flux lines through high-Tc copper oxide superconductors

Abstract

A SERIOUS impediment to many potential applications of the high-transition-temperature (high-Tc) copper oxide superconductors is the relative ease with which magnetic flux lines move within these materials, thereby producing finite electrical resistance1,2. To devise methods for rigidly fixing flux lines in these materials, which is necessary to achieve a truly superconducting (zero resistance) state, requires an understanding of their fundamental properties. In clean, conventional type II superconductors, flux lines or vortices can be modelled well as rigid objects that pass straight through a sample. In the high-Tc materials, however, comparatively short coherence lengths, large anisotropies and large accessible thermal energies lead to more complex and fascinating behaviour, giving for example entangled flux lines and two-dimensional pancake vortices3–5. Some detail of the vortex lattice has been resolved previously6–13, although it is not clear how vortices pass through these materials. Here we address this critical issue by simultaneously decorating the positions of flux lines at opposite sides of single-crystal Bi2Sr2CaCu2O8 (BSCCO) high-Tc superconductors using the Bitter technique14,15. These new data enable us to quantify the wandering of vortices as they pass through the BSCCO high-Tc materials and address the elasticity of the vortex lattice. This information will be useful for devising effective strategies for pinning flux lines to the crystal lattice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bishop, D. J., Gammel, P. L., Huse, D. A. & Murray, C. A. Science 255, 165–172 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Huse, D. A., Fisher, M. P. A. & Fisher, D. S. Nature 358, 553–559 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Nelson, D. R. & Seung, H. S. Phys. Rev. B39, 9153–9174 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Brandt, E. H. J. Supercond. 6, 201–217 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Clem, J. R. Phys. Rev. B 43, 7837–7846 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Dolan, G. J., Chandrashekhar, G. V., Dinger, T. R., Feild, C. & Holtzberg, F. Phys. Rev. Lett. 62, 827–830 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Grier, D. G. et al. Phys. Rev. Lett. 66, 2270–2273 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Bolle, C. A. et al. Phys. Rev. Lett. 66, 112–115 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Dai, H., Liu, J. & Lieber, C. M. Phys. Rev. Lett. 72, 748–751 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Yoon, S., Dai, H., Liu, J. & Lieber, C. M. Science 265, 215–218 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Cubitt, R. et al. Nature 365, 407–411 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Yethiraj, M. et al. Phys. Rev. Lett. 70, 857–860 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Harada, K. et al. Phys. Rev. Lett. 71, 3371–3374 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Essman, U. & Träuble, H. Phys. Status Solidi 18, 813–828 (1966).

    Article  Google Scholar 

  15. Huebner, R. P. Magnetic Flux Structures in Superconductors (Springer, Berlin, 1979).

    Book  Google Scholar 

  16. Huse, D. A. Phys. Rev. B46, 8621–8623 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Nelson, D. R. in Phenomenology and Applications of High-Temperature Superconductors (eds Bedell, K. S., Inui, M., Meltzer, D., Schrieffer, J. R. & Doniach, S.) 187–242 (Addison-Wesley, New York, 1992).

    Google Scholar 

  18. Marchetti, M. C. & Nelson, D. R. Phys. Rev. B47, 12214–12223 (1993).

    Article  CAS  Google Scholar 

  19. Nelson, D. R. & Le Doussal, P. Phys. Rev. B42, 10113–10129 (1990).

    Article  CAS  Google Scholar 

  20. Fisher, D. S. in Phenomenology and Applications of High-Tempeature Superconductors (eds Bedell, K. S., Inui, M., Meltzer, D., Schrieffer, J. R. & Doniach, S.) 287–327 (Addison-Wesley, New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Yoon, S., Dai, H. et al. Path of magnetic flux lines through high-Tc copper oxide superconductors. Nature 371, 777–779 (1994). https://doi.org/10.1038/371777a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371777a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing