Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx

Abstract

WE report here the identification of a unique vertebrate nuclear receptor, Tlx, which is expressed exclusively in the neuroepithelium of the embryonic brain. Sequence comparison reveals striking similarity to the product of the Drosophila terminal/gap gene tailless (tll)1, which is expressed in the embryonic brain and is required for brain development in flies. In vitro DNA-binding assays demonstrated that Tlx and Til proteins share a target gene specificity that is unique among the nuclear receptor superfamily. Ectopic expression of Tlx in fly embryos caused a repression of segmentation comparable to that elicited by Til. The similarities in structure, expression pattern, target gene specificity and phenotypes in trans-genic flies suggest conservation of genetic programs upstream and downstream of this Tlx/TH class of nuclear receptors during embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pignoni, F. et al. Cell 62, 151–163 (1990).

    Article  CAS  Google Scholar 

  2. Mangelsdorf, D. J. et al. Genes Dev. 6, 329–344 (1992).

    Article  CAS  Google Scholar 

  3. Leid, M. et al. Cell 68, 377–395 (1992).

    Article  CAS  Google Scholar 

  4. Miyajima, N. et al. Nucleic Acids Res. 16, 11057–11074 (1988).

    Article  CAS  Google Scholar 

  5. Ritchie, H. H., Wang, L. H., Tsai, S., O'Malley, B. W. & Tsai, M. J. Nucleic Acids Res. 18, 6857–6862 (1990).

    Article  CAS  Google Scholar 

  6. Luisi, B. F. et al. Nature 352, 497–505 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Schwabe, J. W., Chapman, L., Finch, J. T. & Rhodes, D. Cell 75, 567–578 (1993).

    Article  CAS  Google Scholar 

  8. Wilson, T. E., Paulsen, R. E., Padgett, K. A. & Milbrandt, J. Science 256, 107–110 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hamburger, V. & Hamilton, L. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  10. Figdor, M. C. & Stern, C. D. Nature 363, 630–634 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Strecker, T. R., Merriam, J. R. & Lengyel, J. A. Development 102, 721–734 (1988).

    CAS  PubMed  Google Scholar 

  12. Pankratz, M. J., Busch, M., Hoch, M., Seifert, E. & Jackle, H. Science 255, 986–999 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Hoch, M., Gerwin, N., Taubert, H. & Jackle, H. Science 256, 94–97 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A. & Evans, R. M. Nature 358, 771–774 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Kakizuka, A., Yu, R., Evans, R. M. & Umesono, K. Essential Developmental Biology: A Practical Approach (eds Stern, C. D. & Holland, P. W. H.) 223–232 (IRL, Oxford, 1993).

    Google Scholar 

  16. Steingrímsson, E., Pignoni, F., Liaw, G. J. & Lengyel, J. A. Science 254, 418–421 (1991).

    Article  ADS  Google Scholar 

  17. Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A. & Boncinelli, E. Nature 358, 687–690 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Blumberg, B. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2321–2325 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  20. Wilkinson, D. G. In situ Hybridization: A Practical Approach (eds. Wilkinson, D. G.) 75–88 (IRL, Oxford, 1992).

    Google Scholar 

  21. Potter, E. et al. Proc. natn. Acad. Sci. U.S.A. 89, 4192–4196 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Perlmann, T., Rangarajan, P. N., Umesono, K. & Evans, R. M. Genes Dev. 7, 1411–1422 (1993).

    Article  CAS  Google Scholar 

  23. Oro, A. E., McKeown, M. & Evans, R. M. Development 115, 449–462 (1992).

    CAS  PubMed  Google Scholar 

  24. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, 1985).

    Book  Google Scholar 

  25. McKeown, M., Belote, J. M. & Boggs, R. T. Cell 53, 887–895 (1988).

    Article  CAS  Google Scholar 

  26. Tauz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  Google Scholar 

  27. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  28. Kozak, M. Nucleic Acids Res. 16, 8125–8148 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, R., McKeown, M., Evans, R. et al. Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 370, 375–379 (1994). https://doi.org/10.1038/370375a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370375a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing