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The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using
conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches
based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this
situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or
functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role
in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53
into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene
replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of
current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary
summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement
in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent
advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects
for future investigations are proposed.
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Osteosarcoma (OS) is among the commonest of
primary tumors of bone. It represents one of the
most morphologically heterogeneous tumors known
in human pathology and appears in distinct clinical
forms with different degrees of malignancy.1 Most
variants of OS are extremely aggressive as character-
ized by their rapid growth and early development of
distant metastasis, mostly to lung and bones. Death
from OS is usually the result of respiratory failure
due to progressive pulmonary destruction from
metastasis.2,3

Standard treatment involves the use of ‘up-front’
multiagent chemotherapy, definitive surgery of the
primary tumor, and postoperative chemotherapy.
Introduction of adjuvant and neoadjuvant cytotoxic
treatment and improvements in surgical procedures
have increased 5-year survival to over 60% com-

pared to o 20% when only surgery and/or radiation
therapy had been used.4,5 Despite attempts to further
increase the disease-free survival for poorly re-
sponding patients through administration of more
intensified therapy, no survival benefit has been
convincingly shown.6–8

Gene therapy can be defined as the treatment of
disease by the introduction of a therapeutic gene or
the manipulation of a disease-related gene such as
abrogation of an activated oncogene. Tumor sup-
pressor gene therapy is that part of gene therapy
which aims to restore the function of a tumor
suppressor gene lost or functionally inactivated in
cancer cells. In other words, tumor suppressor genes
can be defined as genes for which loss-of-function
mutations are oncogenic. Most commonly they
regulate diverse cellular activities; cell-cycle check-
point responses, detection and repair of DNA
damage, protein ubiquitination and degradation,
mitogenic signaling, cell specification, differentia-
tion, migration and tumor angiogenesis.9 Many
cancers have been shown to have inactivated tumor
suppressor genes. The concept of tumor suppressor
gene therapy is thus based on the following
assumptions: (1) restoration of tumor suppressor
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function through gene transfer and expression
would suppress the tumor phenotype of a cell and
(2) normal nontransformed cells with functional
endogenous tumor suppressor genes should tolerate
the introduction of low to moderate levels of tumor
suppressor genes.10 Indeed, reintroduction of known
tumor suppressors into tumor cells in vitro has been
shown to cause an acute change in cell physiology
and gene expression, resulting in growth arrest or
cell death.11 Despite the response of tumor suppres-
sor gene introduction, the genotype of cancer cells
remain markedly different from the putative normal
counterparts from which they were derived due to
quick acquisition of additional mutations after
inactivation of tumor suppressor genes (genetic
instability). Introduction of these genes in this
context, in fact, cannot reverse the tumorigenic
properties of such cells. Importantly, growth-ar-
rested cancer cells are still metabolically active
and can promote growth of other tumor cells in their
vicinity.12,13 Furthermore, some of these cells can
also resume growing.14 Therefore, only those tumor
suppressor genes which have the capacity to
efficiently induce tumor cell death should be
considered as good candidates for tumor suppressor
gene therapy.

The p53 gene has an attractive apoptotic tumor
suppressor profile as a gene therapy agent. Intro-
duction of wild-type (wt) p53 causes death specifi-
cally in tumor cells, sparing normal cells.
Additionally, p53 can promote death of nearby
nontransduced tumor cells via its ability to transac-
tivate genes whose products inhibit angiogenesis15

and via induction of an immune response against
tumor cells,16 that is p53 causes a bystander effect.
Results of preclinical studies on more than 100
cell lines and tissues have shown that introduction
of wt p53 into neoplastic cells in vitro was lethal
for most cells with p53mut or p53null genotypes.17

Unfortunately, clinical trials based on wt p53
gene replacement have had limited success.18–20

Furthermore, p53 gene therapy of metastatic disease
did not result in improvement in patient status
and survival.21 Analysis of these clinical trials
revealed the insufficient efficacy of that generation
of Ad vectors and low proapoptotic activity of
wt p53 in vivo.22–24

This review presents a contemporary summariza-
tion of the current status of adenovirus-mediated
p53 gene therapy of OS. We will first describe
the recent advances in our understanding of
the mechanisms of tumor suppressor activity of
p53 and then focus our discussion on the use of
Ad vector expressing p53 in the context of gene
therapy of OS.

An overview of p53 tumor suppressor
pathway

The particular contribution of p53 to certain func-
tional decisions depends not only on p53. Depend-

ing on the plethora of intrinsic and extrinsic factors
(the nature and intensity of stress, cellular and
tissue contexts), activation of p53 results in different
cells’ fate.25,26 Acting primarily as a transcription
factor, p53 plays a critical role in regulating the cell
cycle and maintaining genomic integrity by indu-
cing growth arrest or apoptosis in response to a
variety of stresses26–29 (see Figure 1).

The structure and function of p53: The p53 tumor
suppressor gene encodes a 393 amino-acid modular
protein with several interdependent functional
domains (see Figure 2).30,31 The acidic N-terminal
domain (amino acids 1–63) is important for trans-
activation; it contains residues interacting with com-
ponents of the basal transcriptional machinery.32

It is also critically involved in regulating the
stability and activity of p53 protein via interactions
with Mdm2.33,34 A region in this domain was
identified (amino acids 43–63) as being required
for p53-dependent apoptosis.35,36 The proline-rich
region (amino acids 64–91) is also necessary for
apoptosis.37–39 The sequence-specific DNA-binding
domain within residues 100–300 serves as the core
of the p53 protein. The majority of missense
mutations found in tumor samples occurs in this
region of the gene and result in disruption of
the ability of p53 to specifically bind DNA. The
oligomerization domain of p53 (amino acids
324–355) participates in the formation of p53
tetramers. The C-terminal basic domain (amino
acids 356–393) is an important regulatory domain.
One of its functions is to keep p53 in an inactive
form until modifications including phosphorylation
and acetylation can serve to activate the protein
allosterically.30

In unstressed cells, p53 is present at low levels
and exists in a latent form that requires modification
to become active. Various forms of stress (DNA
damage, oncogenic stimuli, redox stress and
hypoxia) rapidly induce a transient increase in p53
protein via enhanced translation of p53 mRNA
and stabilization of p53 protein.40 Also, a series of
post-translational modifications occurs in p53 in-
cluding phosphorylation, glycosylation and acetyl-
ation, that affect a myriad of activities including
protein–protein interactions, alternative splicing,
homo- and hetero-oligomerization, C- and N-term-
inal truncations, and DNA-binding capabilities.30,40

Activated p53 initiates a transcriptional program
that reflects the nature of the stress signal, resulting
in protein modifications and alternative proteins
being associated with p53 protein.41

The function of p53 in cancers can be lost by
various mechanisms, including lesions that prevent
activation of p53, mutations within the TP53 gene
(which encodes p53) itself and mutations of down-
stream mediators of p53 function. Most TP53
mutations found in tumors are point mutations
which usually result in the expression of mutant
p53 protein. Importantly, these proteins are often
more stable than wt p53 and some p53 mutants can
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act as dominant-negative inhibitors of wt p53.42,43

Certain missense mutations not only result in
abrogation of wt p53 activity, but the expressed
p53 mutant proteins also tend to gain oncogenic
function, such as interference with wt p53-indepen-
dent apoptosis.44 Importantly, such p53 mutants
contribute to the resistance of tumor cells to
commonly used chemotherapeutic agents.45 Many
tumors with a dysfunctional p53 pathway retain wt
protein. Defects of the tumor suppressor pathway in
these cases results from functional abnormalities in
upstream regulators of p53 activity or from effectors
of apoptotic activity of p5346 (see Figure 1).

Mdm2

Mdm2 is a master regulator of p53.47 It controls
p53 function through inhibition of p53-mediated
transcriptional activity48,49 and by promoting p53
degradation.33,34 Binding of Mdm2 to p53 is essen-
tial for this effect. Importantly, the mdm2 gene is a
target gene for p53. p53 binds to p53-responsive
elements located within the mdm2 gene, and
promotes the production of mdm2 transcripts.50,51

Consequently, an autoregulatory negative feedback
loop exists, wherein p53 induces Mdm2 expression
and Mdm2 represses p53 activity. This serves as an

Figure 1 p53-mediated response to stress. A schematic diagram demonstrating some of the known components of the p53 functional
circuit. Shown are key components of the apoptotic program as well as some its key regulators. Components in white squares inhibit
apoptosis while those in gray squares promote apoptosis. See text for details.

Figure 2 Functional domains of p53 protein. The human p53 protein consists of 393 amino acids and has several functional domains
(indicated by the shaded regions) including an acidic or transactivation domain, a proline-rich domain, a sequence-specific DNA-binding
domain, an oligomerization domain, and a C-terminal regulatory domain. See text for details.
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important mechanism for restraining p53 function
in the absence of stress. Cellular stress induces
modifications of both p53 and Mdm2 proteins,
which results in reduced avidity of p53 for Mdm2
and thereby, inhibition of ubiquitination and degra-
dation of p53 protein. An inappropriate excess of
Mdm2 may result in exaggerated silencing of p53,
abrogating its tumor suppressor effects, as it was
found that overexpression of Mdm2 in mice resulted
in the production of tumors with as little as a four-
fold increase in Mdm2 levels giving rise to tumors in
100% of the mice.52

Multiple mechanisms may modulate Mdm2 activ-
ity and its ability to access p53 for ubiquitination.
For example, p14ARF, human ribosomal protein L11,
and cyclin G can act as negative regulators of
Mdm2’s ability to downregulate p53 levels.53–55

Other factors recently shown to positively regulate
Mdm2 include YY1, gankyrin and KAP1.56–58 Mdm2
and mdmx prevent ASPP1 and ASPP2 from stimu-
lating the apoptotic function of p53 by binding and
inhibiting the transcriptional activity of p53.59

Proapoptotic activity of p53

P53 can induce apoptosis in several ways.60–63 It can
act as a transcriptional factor that directly activates
the expression of genes known to promote apoptosis
including Bax,64 Bak,65 PUMA,66,67 Noxa68 and Bid.69

The net effect of induction of these genes is an
increasing of the ratio of pro- to antiapoptotic
Bcl-2 proteins, consequently, favoring the release
of apoptogenic proteins from the mitochondria,
caspase activation and apoptosis. In addition, p53
can also transactivate several effectors of apoptosis
acting downstream of mitochondria such as Apaf-1
and caspase-6.70,71 p53 also regulates the extrinsic
apoptotic pathway, activating expression of Fas/
CD95, DR5 and RDL1 genes72,73 and is capable of
counteracting with antiapoptotic pathways indu-
cing genes including PTEN and IGF-BP3, which
inhibit survival signaling.74,75

P53 also possesses a proapoptotic function that is
independent of its transcriptional activity.76–78 In
response to stress, p53 accumulates in the cyto-
plasm, where it directly or indirectly activates the
proapoptotic proteins to promote mitochondrial
outer-membrane permeabilization.79–82 It seems
likely that coordination of the nuclear, cytoplasmic,
and mitochondrial activities of p53 cooperate to
ultimately cause cell death. In addition to transacti-
vation functions, p53 has also transrepression
capabilities that may contribute to apoptosis.83–85

To explain how p53 can induce apoptosis or cell-
cycle arrest, different models have been proposed.
One quantitative model assumes the existence of
p53-responsive genes with differing binding affi-
nities. According to this model, a subset of promo-
ters should be activated only when the expression
level of p53 reaches a certain threshold. Low levels
of p53 protein will result in cell-cycle arrest because

promoters of cell-cycle arrest genes (p21, mdm2)
have higher affinity binding sites for p53 than
promoters of genes responsive for apoptosis (Bax,
IGF-BP3).36 Not all data support this model. For
example, the binding affinity of p53 to the PUMA
promoter, which regulates a proapoptotic gene, is
similar to the p21 and mdm2 promoters. Other
qualitative models proposed that induction of
apoptosis or cell-cycle arrest by p53 depends on
p53-binding proteins, which are able to modulate
the selection of target genes. Importantly, some of
these factors have a specific and selective role in
enabling the expression of the apoptotic target
genes. For example, JMY cooperates with p300 to
enhance the ability of p53 to induce the expression
of BAX, but does not significantly influence the
induction of the p21 gene.86 The ASPP1 and ASPP2
genes have been shown to interact with p53 and
enhance the interaction with the promoter of the
BAX gene.87 Inhibition of ASPP expression blocks
the apoptotic response to p53. Other important
modulators of p53 apoptotic induction are p63 and
p73 proteins. It was shown that p53 is not able to
bind promoters of apoptotic targets in p63/p73
double-null cells.88

E2F

The E2F family of transcription factors are down-
stream effectors of the retinoblastoma (Rb) protein
pathway. Since their discovery, E2Fs have been
viewed as positive regulators of genes required for
DNA synthesis.89,90 Recent findings have changed
this view.91–93 It has been found that depending on
the context, E2Fs function as activators or repressors
of transcription. Specifically, there is a bifurcation of
E2F family members with respect to their transcrip-
tional roles in cell-cycle control; E2F1–3 function
mainly as activators of transcription while E2F4
and E2F5 act primarily as repressors. These, new
findings considerably broadened our understanding
of E2F transcriptional control beyond S phase, E2F
also regulates genes involved in DNA repair and
recombination, apoptosis, differentiation and deve-
lopment, as well as other genes of still unknown
function.

E2F can induce apoptosis in a p53-dependent
manner as well as in a p53-independent manner.92,94

E2F1 transcriptionally regulates the expression of
the DNA damage-responsive kinases ATM and Chk2
that phosphorylate p53,95,96 and induces expression
of the proapoptotic cofactors of p53, ASPP1, ASPP2,
JMY and TP53INP1.97,98 E2F also directly activates
the p53 proapoptotic target genes PUMA, Noxa,
Bim, Hrk/DR5,99 Apaf170 and SIVA,100 and down-
regulates the expression of Mcl-1, an antiapoptotic
member of the Bcl-2 family.92

E2F factors have been suggested to potentially be
involved in acquired resistance to chemotherapeutic
drugs in OS cells. Recently, it has been found that
E2F1-mediated activation of the p73 promoter
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induces apoptosis in human OS cells.101 Cinti and
colleagues have also demonstrated that doxorubicin
treatment of chemosensitive human OS cells (HOS)
results in increased levels of p73, overexpression of
bax, and downregulation of bcl-2. In performing a
chromatin immunoprecipitation assay, they de-
tected a multimolecular complex formed by E2F1-
pRb2/p130–p300 bound to the p73 promoter.102 In
contrast, in chemoresistant cells (HOSDXR150) a
multimolecular complex formed by E2F4-pRb2/
p130-histone deacetylase complex 1 was bound to
the same p73 promoter region. In another study,
significant correlations between E2F and dihydro-
folate reductase and thymidilate synthase (TS)
in OS patient samples were observed, suggesting
the potential involvement of the E2F pathway in
methotrexat resistance.103

PTEN

In recent years, it has been demonstrated that
multiple levels of crosstalk exist between PTEN
(phosphates and tensin homolog deleted from
chromosome 10) and p53, and that functional PTEN
is important for proapoptotic activity of p53.
The PTEN tumor suppressor gene is located on
chromosome 10q23 and is known to be the most
highly mutated tumor suppressor gene after p53.104

The PTEN encodes a dual specificity protein–lipid
phosphatase that plays an important role in regulat-
ing proliferation, migration, survival, cell invasion
and tumor angiogenesis.105,106 The lipid phosphatase
activity of PTEN is crucial for its tumor suppressive
activity. The main PTEN substrate is phosphatydi-
linositol(3,4,5)-triphosphate (PIP-3). PIP-3 levels
are increased upon stimulation by growth factors
through activation of PI3 kinase. Accumulation
of PIP3 at the membrane allows recruitment of
the proto-oncogene serine/threonine kinase Akt/
PKB which is then activated by phosphorylation.
Activated Akt is a well-known survival factor.
Thus, by keeping the levels of PIP-3 low, PTEN
prevents prosurvival activity of Akt. Akt also
phosphorylates serine residues in the Mdm2
domain that contains a nuclear localization motif.
These phosphorylations are important for transloca-
tion of Mdm2 from the cytoplasm into the nucleus
where it can interact with p53 and inhibit its
transcriptional activity.107,108 Consequently, PTEN
protects p53 from survival signaling induced by
growth factors via the PI3K-Akt pathway and
nuclear entry of Mdm2. Recently Wu and colleagues
have shown that by antagonizing the PI3-kinase
pathway, PTEN also negatively regulates the P1
promoter on the 50 end of the mdm2 gene, leading to
decreased L-Mdm2 expression and reduced p90MDM2

isoform production.109

p53 is capable of binding directly to a site in the
PTEN promoter and inducing PTEN mRNA expres-
sion in response to DNA damage.75 In turn, a p53-
binding domain has been identified in PTEN and

evidence exists that physical interaction between
PTEN and p53 is important for modulation of p53
function in vivo.110,111 It was further demonstrated
that PTEN can control p53 half-life independent of
PI3K/Akt/Mdm2 via a currently unknown mechan-
ism. Finally, Donner and colleagues have recently
demonstrated that intensive stress induces the
phosphorylation of p53 protein which results in a
switch of gene promoter targeting; from the promo-
ter for mdm2 to the promoter for PTEN. Formation of
the mdm2-p53 autoregulatory feedback loop is thus
blocked and p53 together with PTEN form an
apoptotic amplification cycle that induces cell
death.107 These findings show the importance of
cooperation of PTEN with p53 for efficient action as
a tumor suppressor and provide a strong rationale
for combined p53þPTEN cancer gene therapy.

Despite an overall high incidence of PTEN
mutations in humans, the majority of them have
been identified in epithelial cell-derived tumors.112

To date, PTEN mutations have not been associated
with OS tumorigenesis, despite the fact that
the chromosomal loss of 10q has been documented
in nearly 30% of human OS tumor samples
analyzed.113

Prosurvival (antiapoptotic) signaling in
tumor cells

Survival signaling provided by the tumor micro-
environment significantly modulates cellular re-
sponse to p53 activation. Interactions of cancer
cells with each other and with stromal cells, various
growth factors and with components of the extra-
cellular matrix can drastically affect the apoptosis
sensitivity of these cells.114,115

One of the most important molecules responsible
for rescuing cells from p53-induced apoptosis is Akt
kinase.116 The activation of Akt by survival signals is
achieved mainly through a kinase cascade involving
PI3 kinase. The mechanism by which Akt protects
cells from death is multifactorial.117 Activated Akt
kinase can phosphorylate and downregulate expres-
sion of PUMA, an important mediator of the p53
apoptotic response and also can inhibit catalytic
activity of caspase-9.118 Akt-mediated phosphoryla-
tion of FKHR—a member of the Forkhead family of
transcription factors, prevents its nuclear transloca-
tion and activation of FKHR target genes, which
include the proapoptotic proteins BIM and Fas
ligand.119 Also, the apoptosis-inducing protein Bad
after phosphorylation by Akt loses the ability to
bind antiapoptotic members of the Bcl-2 family,
specifically Bcl-2 and Bcl-XL, thus releasing them
for a cell survival response.120 As was alluded to
previously, Akt-mediated phosphorylation of Mdm2
results in inactivation of p53.

Experiments conducted using three-dimensional
(3D) in vitro models suggest that additional levels
of apoptosis signaling regulation likely exist in
tissues.121–123 Furthermore, it has been shown that
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fundamental differences exist between degrees of
survival of tumor cells incorporated into 3D spher-
oids vs tumors grown in monolayer in response to
exposure to death stimuli.124 Cells in 3D spheroids
rapidly acquire multidrug resistance and this phe-
notype appears to be linked to cell adhesion.

Inhibition of tumor angiogenesis and
metastases

The p53 protein stimulates the expression of genes
that prevent the growth of new blood vessels in the
tumor’s vicinity and inhibits tumor invasion and
metastasis. Among known p53’s target genes with
antiangiogenic and antimetastatic activities are
thrombospondin-1 (TSP1), KAI1, BAI1 and mas-
pin.125–128 Reintroduction of wt p53 into tumor cells
upregulated the expression of antiangiogenic factors
which leads to downregulation of proangiogenic
vascular endothelial growth factor and inhibition of
neovascularization.129–133 Suppression of angiogen-
esis contributed to suppression of both primary
tumors and their metastasis.134

Role of the immune system in p53 tumor
suppressor gene therapy

Despite the fact that the immune system has a huge
antitumor potential, tumors are able to escape from
immunosurveillance. Rational modulation of the
patient’s immune response could significantly aug-
ment the antitumor efficacy of gene therapy strate-
gies. Interestingly, a link was recently discovered
between p53 and the interferon system in modulat-
ing tumor suppression and antiviral immunity. The
interferon system can upregulate expression of the
p53 gene which in the context of other stimuli leads
to p53 activation and enhancement of its proapop-
totic activity.16,135 In turn, p53 protein can transacti-
vate expression of the interferon regulatory factor 5
gene,136 whose product contributes to IFN-a and
IFN-b induction.137 The type I interferons exhibit a
wide range of biological activities including anti-
viral, antiproliferative and antiangiogenic ef-
fects.138,139 They activate cells in the immune
system, and help in presentation of cancer cells to
the immune system by stimulating production of
cell surface molecules (costimulatory molecules,
MHC antigens and tumor-associated antigens).

When p53 was overexpressed in the context of
insertion of a viral vector in tumor cells, it was seen
to induce an antitumor immune response.140–143 This
response was mediated by CD4þ Th cells, CD8þ

cytolytic T cells and NK cells and resulted not only
in tumor cell rejection but also in establishing long-
term immune memory.144 Importantly, rejection of
poorly immunogenic tumors and well-established
progressing tumors has been demonstrated when
introduction of p53 was combined with inhibition
of immunosuppressive activity of Treg cells and

activation of innate immunity.145 Particularly im-
portant, this tumor rejection occurred in the absence
of autoreactivity to normal tissues.145,146

Thus, p53 inhibits tumor progression not only via
induction of apoptotic cell death (an ‘intrinsic’
tumor suppressor mechanism), but also via stimula-
tion of antitumor immunity (an ‘extrinsic’ tumor
suppressor mechanism). This is important because
reintroduction of p53 into every cell in a solid tumor
is not currently possible. Induction of an efficient
antitumor immune response should help to elim-
inate uninfected tumor cells and prevent relapse.
Nevertheless, as a high ratio of activated immune
cells to tumor cells is required for immunologic
tumor destruction,147 it is important to eliminate
(kill) as many tumor cells as possible by other
means. In this regard the oncolytic capabilities of a
conditionally replicating adenovirus (CRAd) agent
could be advantageous for this purpose.

p53 in development and differentiation

In addition to its role as a tumor suppressor and cell-
cycle checkpoint control protein, p53 has been
implicated as an important protein in development
and differentiation.148–151 Particularly interesting are
the findings regarding p53’s role in stem cell self-
renewal and differentiation. It has been shown that
p53 induces differentiation of mouse embryonic
stem cells (ESC).152 This role of p53 in cellular
differentiation represents an alternative mechanism
to maintaining genetic stability in ESCs, which are
resistant to p53-dependent cell-cycle arrest and
apoptosis after DNA damage.153 Induction of the
differentiation of ESCs into cell types that can
undergo efficient p53-dependent cell-cycle arrest
or apoptosis will result in the elimination of
genetically abnormal cells. p53 also regulates asym-
metric self-renewal and immortal DNA strand
cosegregation—two unique attributes of adult stem
cells (ASC), which have been proposed to restrict
their carcinogenic potential.154 Asymmetric self-
renewal is characterized by divisions that produce
a new ASC and a nonstem cell sister. Immortal DNA
strand cosegregation means that at each cell divi-
sion, stem cells continuously nonrandomly segre-
gate to themselves the set of chromosomes with the
oldest template DNA strands (ie, immortal DNA
strands). This molecular maneuver allows ASC to
significantly reduce the number of mutations which
arise from unrepaired or misrepaired replication
errors. Using engineered cultured cells that exhibit
asymmetric self-renewal and immortal DNA strand
cosegregation, Sherley and colleagues have shown
that both ASC-specific functions are regulated by
the p53 gene.154 Recently, two groups demonstrated
increased self-renewal of neural stem cells in mice
lacking p53.155,156 Prenatal exposure of these mice to
mutagens lead to the formation of glioblastoma-like
tumor in the adult supraventricular zone of the
cerebrum.155
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Role of p53 in the development of bone
and in OS pathogenesis

Bone malformations (failures in skull growth and
delayed longitudinal bone growth) and a high
incidence of OSs in p53 null or mutant mice suggest
that p53’s function may be critical during skeleto-
genesis.155,157,158 Abnormalities of the p53 gene in
OS occur with frequencies approaching 50% of all
cases.159 In in vitro studies it has been shown that
p53 loss of function mutations often lead to a lack of
terminal differentiation for the osteogenic lineage,
and this property is regained after stable transfection
of the cells with wt p53.160 Analysis of clonal
mesenchymal stem cell (MSC) populations derived
from p53�/� mice have revealed that Runx2 and
osteopontin, early and intermediate osteogenic
markers, were upregulated in p53�/� MSC compared
to wt cells during osteogenesis.161 Interestingly, the
terminal osteogenic marker gene, osteocalcin was
lower in p53�/� MSC. Jones and colleagues have also
found that p53-null osteoprogenitor cells have
increased expression of Runx2. In contrast, expres-
sion of Runx2 has been lost in osteoblasts with
hyperactive p53.162 Wang et al have reported that
osterix, another transcription factor regulating bone
formation and osteoblast differentiation,163 was
upregulated in calvarial bones of p53�/� mice.164

Thus, it seems, that the lack of p53 function results
in enhanced early osteogenesis in MSC, but prevents
terminal differentiation toward a mature osteocyte
phenotype.

Particularly interesting are findings that p53-null
osteoprogenitor cells have increased proliferation,
increased expression of Runx2, and increased
tumorigenic potential, as mice specifically p53
deleted develop OS.162 Runx2 belongs to the
RUNX (Runt-related transcription factor) family of
genes which encode transcription factors that can
bind and recruit a range of coactivators or corepres-
sors (CoR) and thereby serve as orchestrators of
transcription at target promoter sites.165,166 Runx2
promotes skeletal cell differentiation from multi-
potential mesenchymal cells,167–169 and also contri-
butes to cell growth control of osteogenic cells.170,171

Its expression is tightly regulated by a broad
spectrum of factors including (1, 25)-dihydroxyvita-
min D3, ascorbic acid, bone morphogenetic protein-
2 (BMP-2), transforming growth factor-b, tumor
necrosis factor-a, fibroblast growth factor-2, retinoic
acid and parathyroid hormone.172 p53 functionally
interact with many of these factors and lack of p53
might explain the fact that the control of Runx2
levels and its function is consistently disrupted in
OS cells.171,173 For example, p53-deficient cells
display an impaired cytostatic response to TGF-b
signals.174 Also, it has been shown that Runx2
induces the growth arrest of osteoblastic cells
through induction of p27KIP1.173 This function of
Runx2 might be inefficient in p53-null cells,
because p27 acts as a haploinsufficient tumor

suppressor,175 but it has been shown that down-
regulation of p27 is a common feature in p53�/�

tumors.176 From the point of view of OS pathogen-
esis, particularly interesting is the realization that
Runx2 has a survival function,177 and due to this
ability, probably collaborates with other oncogenes
in tumor development.178 As will be discussed
below, deregulation of Wnt signaling pathway in
p53�/� osteoblasts appears to result in the upregula-
tion of c-myc.

Presence of functional p53 is important for
regulated expression of other factors involved in
osteogenesis especially osteocalcin179 and BMP-2.180

Noted too are the findings about interactions
between p53 and the Wnt/b-catenin signaling path-
way in osteoblasts181 in light of the emerging role of
the Wnt pathway in controlling osteoblast differ-
entiation.182–186 The Wnt/b-catenin signaling path-
way is transduced through stabilizing b-catenin
protein by inhibiting glycogen synthase kinase-3-
mediated b-catenin phosphorylation.187 Unphos-
phorylated b-catenin accumulates in the cytoplasm
and translocates to the nucleus where it displaces
CoR from the Lef1/Tcf transcription factor. This, in
turn, directly interacts with Lef1/Tcf and recruits
transcriptional coactivators to stimulate expression
of many genes, including c-myc and cyclin D1.
Approximately 70% of OS samples displayed
deregulation of b-catenin.188

Recently, it has been demonstrated that the
inactivation of p53 in OS directly by mutation vs
indirectly by human HDM2 amplification may have
different cellular consequences with respect to the
stability of the genome; mutations of p53 correlated
significantly with the presence of high levels of
genomic instability while inhibition of tumor sup-
pressive properties of p53, via amplification and
overexpression of HDM2, did not displayed similar
high levels.189 Also, mice bearing certain ‘knock-in’
p53 mutants have a tendency for development of
metastasizing OS.190,191 Studying the properties of
such TP53 mutants has demonstrated their ability to
bind and inhibit the function of p63 and p73.
Notably, these data indicate in vivo differences
between loss of p53 or presence of a p53 mutation
in tumor development and have significant implica-
tions for therapy.191

Molecular profiling of chemoresistant OS

Gene expression profiling of chemotherapy-resistant
OS has been recently explored using microarray
technology.192–194 These studies revealed that the
chemoresistance signature includes genes related to
‘bone metabolism,’ ‘cancer biology’ and ‘drug resis-
tance’. Particularly important are the findings
regarding dysregulation of TWIST1 overexpression
in chemoresistant OS cells.192 TWIST1 has been
shown to affect the expression and DNA-binding
ability of Runx2.195,196 In addition, TWIST1 has been
found to cooperate with MYC and MYCN to
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suppress the p53-dependent apoptosis path-
way,197,198 and is involved in Taxol resistance and
metastasis.199,200 Importantly, overexpression of
TWIST1 is associated with characteristics of osteo-
progenitor cells that have decreased proliferation
and a less mature phenotype.201 As all of these are
properties of cancer stem cells,202,203 Lau and
colleagues have suggested that chemoresistant OS
cells overexpressing TWIST1 may arise from puta-
tive cancer stem cells.192 Cells with stem cell
qualities have been identified in malignancies of
hematopoietic origin and in some solid tumors.202

According to current understanding, cancer stem
cells are likely to share many of the properties of
normal stem cells, including relative quiescence,
resistance to drug and toxins through the expression
of ABC transporters, capacity for DNA repair, and
resistance to apoptosis.202 These features combined
with the ability for unlimited self-renewal might
explain the failure of current therapies to eradicate
solid tumors. Thus, in order to cure cancer, antic-
ancer agents must be able to kill cancer stem cells.

p53 tumor suppressor gene therapy of OS

Up until very recently only one cell line, Saos-2, or
its derivatives were used in tumor suppressor gene
therapy studies of OS.204–208 This cell line has a
homozygous deletion of the p53 gene and also lacks
expression of the Rb gene. Reintroduction of wt p53
in Saos-2 induces cell death by apoptosis.205

Importantly, when delivered and expressed effi-
ciently using Ad vectors, wt p53 alone induces
apoptotic death of Saos-2 cells without additional
stimuli. Sensitivity to p53 proapoptotic activity
therefore makes Saos-2 cells a suitable system for
the analysis of certain aspects of tumor suppressor
gene therapy. For example, Densmore et al have
advantageously employed the Saos-2 cell system to
study the potential of polyethyleneimine as a p53
gene delivery vehicle to OS lung metastases. Using
the Saos-LM6 cell line, a metastatic derivative of the
Saos-2 line, they demonstrated that aerosol delivery
of plasmid DNA/polyethylenemine complexes con-
taining either wt p53 gene or a constitutively active
p53-CD(1–366) to mice with established lung micro-
metastases resulted in significant reduction in the
numbers and size of tumors.209 In another study
Song and Boyce used Saos-2 cells to explore the use
of an insect baculovirus as a vector for gene
delivery.210 They showed that infection with this
vector expressing wt p53 (BV-p53) at a MOI of 100
(at which nearly 100% of cells were transduced)
resulted in apoptotic cell death in about 50% of
cells. When the same dose of BV-p53 was used in
combination with adriamycin (a DNA-damaging
chemotherapeutic drug), 495% of Saos-2 cells were
killed.

Despite demonstrated suitability of Saos-2 cells
for studying certain questions of OS biology, a wide
panel of OS tumor cell lines would be preferable to

provide more reliable information regarding the
feasibility of tumor suppressor gene therapy. In this
respect, in recent studies by Ganjavi et al211 and
Hellwinkel et al212 attempts were made to explore
the antitumor efficacy of tumor suppressor gene
reintroduction using a panel of different human OS
cell lines. Ganjavi and associates used HOS, KHOS/
NP and MNNG cell lines in addition to Saos-2 cells.
It should be noted that KHOS/NP and MNNG are
derivatives of HOS cells. In these studies infection
with Ad-p53wt at an MOI of 8 p.f.u./cell (16 p.f.u./
cell for KHOS/NP) induced apoptosis in approxi-
mately half the cell population in each cell line.
Introduction of p53 in these cell lines dramatically
enhanced their sensitivity to DNA damaging drugs
cisplatin and doxorubicin.

Hellwinkel et al used a panel of five human OS
cell lines. Results of these studies demonstrated
substantial cell death only in two of five tumor cell
lines tested. Again, Saos-2 cells demonstrated high-
est sensitivity to wt p53; only 14% of these cells
were alive after infection with Ad-p53wt at an MOI
of 25. U2OS cells have also demonstrated sensitivity
to wt p53 reintroduction, but a much higher MOI
was required to induce cell death. Approximately
70% of U2OS cells were alive after infection with
Ad-p53wt at an MOI of 25, and MOIs of 100 and 200
were required to achieve 90% cell killing. It is
important to note that Ad5-based adenoviral vector
transduces U2OS cells more efficiently than Saos-2
cells. The lower response of U2OS cells to wt p53
introduction might be explained by inhibition of
p53 activity by Mdm2 which is overexpressed in
U2OS cells. Three other OS cell lines studied (K-
HOS, MG-63 and SJSA) have demonstrated dimin-
ished cell proliferation in response to Ad-p53
infection but not cell death. The results with SJSA
and MG-63 cells can be explained by low efficiency
of Ad transduction of these cells and overexpression
of Mdm2.213–216 The reasons for the very low
apoptotic response of K-HOS cells on p53 introduc-
tion remain unknown.

To explore whether genotoxic stress could aug-
ment the response of studied OS cells to p53
introduction, Hellwinkel et al combined Ad-p53
infection with treatment by cisplatin or doxorubicin.
Except for U2OS and Saos-2 cells, the drugs did not
multiply the effects of p53 introduction. Further
results by this group demonstrated that efficient
induction of apoptosis in OS cells, via introduction
of a wt p53 tumor suppressor gene using an Ad5
based adenoviral vector, can be achieved only in
cases where OS cells express high levels of Ad5
receptors and do not express p53 inhibitors.

About 30% of OS tumors overexpress Mdm2 due
to mdm2 gene amplification,213 and, consequently,
introduction of wt p53 is unlikely to be efficacious.
To overcome the inhibition of p53 by Mdm2,
modified p53 genes have been constructed. Specifi-
cally, Conseiller et al217 generated a chimeric tumor
suppressor 1 (CTS1) containing the p53 core domain
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(amino acids 75–325), with the VP16 activation
domain ligated to the 50-end. They further optimized
the leucine-zipper domain that was ligated to the 30-
end of the p53 core domain. This CTS1 demon-
strated resistance to inactivation by Mdm2 and by
the p53 mutant, H175. In a transient transfection
assay with Saos-2 cells, CTS1 has shown the ability
to induce apoptosis faster than wt p53 protein. To
explore the antitumor potential of CTS1 in the
context of Mdm2 overexpression, Bougeret et al218

constructed an Ad vector expressing CTS1 under
control of the CMV promoter (AV.CTS1). Using the
human OS cell line SA1 (also known as Osa-CL)
which overexpresses endogenous Mdm2, they
found that AV.CTS1 induced apoptosis six-fold
more efficiently than Ad-expressing wt p53 (Ad-
p53) in vitro. Furthermore, induction of apoptosis
was significantly higher in AV.CTS1-transduced
pre-established SA1 tumors in nude mice compared
to Ad-p53-treated tumors. In contrast, AV.CTS1
induced cell-cycle arrest and cell death less effi-
ciently than Ad-p53 in tumor cells harboring
nonfunctional p53. Results of studies with CTS1
have shown that modified p53 can be more efficient
than wt p53 in induction of apoptosis in cells with
high levels of Mdm2.

A different approach was used by Tang et al219 to
overcome the inhibition of p53 by Mdm2. Previous
work had established that the hydrophobic residues
Leu-14 and Phe-19 of p53 were crucial for the
interaction between p53 and Hdm2.32 To study
proapoptotic properties of p53 with amino-acid
substitutions at Leu-14 and Phe-19, Lin and collea-
gues infected cells with different levels of Mdm2
with an adenoviral vector expressing a modified p53
gene (Ad-p53 14/19).219 They found that in HT1080
cells (low Mdm2), Ad-p53 14/19 induced apoptosis
at a level similar to Ad-wtp53. In human OS SJSA
cells (high Mdm2) Ad-p53 14/19 induced dramati-
cally more apoptosis than Ad-wtp53 (44 vs 11%).
Also, infection of SJSA cells with Ad-p53 14/19
sensitized them to doxorubicin and cisplatin. After
exposure of SJSA cells to 0.1mgml�1 of doxorubicin
or 5mgml�1 cisplatin only 4 and 24%, respectively,
were apoptotic. Combined treatment of SJSA cells
with Ad-wtp53 plus doxorubicin or cisplatin at the
same doses induced apoptotic cell death only in 15 or
33% of cells, respectively, demonstrating continued
resistance. In contrast, Ad-p53 14/19 plus doxorubi-
cin or cisplatin generated apoptosis in 63 or 80% of
SJSA, respectively. Thus, the studies of Bougeret et al
and Tang et al demonstrated that abrogation of the
Mdm2 binding site in p53 results in augmentation of
its proapoptotic activity in OS cells with a high level
of Mdm2 expression comparing to wt p53.

p53 in the context of CRAd agents
(armed CRAds)

The anticancer potency of p53 in the context of a
nonreplicative Ad vector is limited because the

vector infects only a small fraction of the cells
within a tumor. Employment of a replication-
competent Ad vector has the potential of transgene
delivery to significantly more cells via repeated
cycles of infection, cell lysis, and virus spread to
neighboring cells.220,221 Also, replication-competent
Ad vectors have the potential to increase transgene
expression up to 1000-fold in each infected cell,
compared with a nonreplicating Ad. However, p53
expression might be deleterious for viral replication
due to induction of preliminary apoptosis. Also,
spreading of the Ad vector through the tumoral mass
might be blocked due to induction of the interferon
system by p53.16 Alternatively, several Ad5 early
gene products oppose p53 function. For example,
adenoviral E1B-55-kDa protein binds and inacti-
vates p53.222 The E1B-55-kDa protein and another
Ad protein E4orf6 together mediate the ubiquitina-
tion and degradation of p53.223–226 Other Ad proteins
can indirectly interfere with p53 activity. The E1A
gene products antagonize p53 activity and this
correlates with its ability to interact with p300 and
the p400/TRRAP protein complex.227–229 The E1B-
19-kDa protein inhibits the downstream effects of
p53 by blocking induction of apoptosis.230,231 In
contrast, the Ad5 E3 region encodes the adenoviral
death protein which is cytotoxic but, owing to
strong expression only at very late stages of viral
infection, is not deleterious for viral production and
promotes lysis of infected cells.232

Therefore, expression of p53 at late stages of the
viral life cycle might be not deleterious to virion
progeny production. To explore this strategy, Sauth-
off et al233 constructed a replicating Ad vector
(Adp53rc) that contains the p53 cDNA inserted into
the adenoviral fiber transcription unit, using an
internal ribosomal entry site and demonstrated that
the expression pattern of the p53 protein correlated
with the late expression pattern of the adenoviral
fiber protein. Adp53rc demonstrated improved
oncolytic properties compared to the control Ad
vector (Ad-co) which had the same genetic back-
bone, but lacked the p53 gene. Despite this, Adp53rc
induced apoptotic cell death only in 10% of infected
cells, compared with 5% induced by infection with
Ad-co. Also, expression of the p53 target genes p21
and bax were not detected despite strong nuclear
expression of p53. Thus, p53 caused no obstacles to
viral replication but p53’s properties as a transcrip-
tional activator were significantly inhibited by Ad.

It is possible that despite the Ad genes which
oppose p53 functions (which are strongly expressed
at early stages of viral replication) low concentra-
tions of these proteins might be sufficient to inhibit
p53-dependent transactivation at late stages of
infection. The E1B-55-kDA protein deserves special
attention in this regard. It has several activities that
inhibit p53 function.234 According to this model
E1B-55K inhibits activation by p53 by binding a
repression domain to it. Importantly, E1B-55K
increases p53 stability by binding to the same region
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in the amino-terminal domain of p53 bound by
Mdm2.32 Also, p53 bound to E1B-55K has a 10-fold
higher affinity for its binding site than free p53.235

As a result, p53 is converted from an activator into a
constitutive repressor of genes with p53-binding
sites. The stabilization of p53 by E1B-55-kDa protein
in the absence of E4orf6 protein leads to a significant
increase in p53 concentration.236 Thus, E1B-55K
will significantly limit p53 tumor suppressor activ-
ity in the context of replication competent Ad
vector. To prevent such inhibition, modified p53
might be used instead of wt p53. For example,
Dobbelstein and colleagues found that replacement
of the five amino acid residues at position 24–28 by
the homologous residues from p73 resulted in
complete resistance of chimeric p53 (p53mt24–28)
to E1B-55K- and E4orf6-mediated degradation.225

This chimeric p53 when expressed in the context
of a first-generation Ad vector demonstrated resis-
tance to degradation by Ad proteins in cells
coinfected with wt Ad.237 Importantly, chimeric
p53 was capable of inducing such p53 target genes
as p21/CDKN1A, mdm2 and bax, regardless of the
infection with replicative viruses.237,238 Interesting,
even strong overexpression of p53mt24–28 allowed
the virus to replicate as efficiently as when it was
absent. These findings demonstrate that employ-
ment of modified p53 in the context of a replication-
competent Ad vector is a feasible approach.

The efficiency of p53 in the context of CRAd
agents on OS cell lines has been studied by
Gerritsen and colleagues.215,239 To restrict Ad repli-
cation to tumor cells, amino acids 122–129 in the
conserved region 2 domain of E1A (necessary for
binding to the Rb protein) were deleted. Using a
crystal violet assay, van Beusechem et al found that
a CRAd agent expressing wt p53 (AdD24-p53)
exhibited enhanced oncolytic capacity compared
with a control vector (AdD24) in killing OS cells
with low levels of Mdm2. AdD24-p53 was B100-
fold more potent than AdD24 against U2OS cells
and 10-fold more potent against Saos-2 cells, but
had no advantage when examined in MG-63 and
MNNG-HOS cells, which express high levels of
Mdm2. In contrast, a CRAd agent expressing a p53
variant resistant to Mdm2-mediated degradation
(AdD24-p53(14/19)) was B10 times more effective
than either AdD24 or AdD24-p53 in killing Mdm2-
high cells. However, AdD24-p53 (14/19) was less
effective than AdD24-p53 against Mdm2-low cells. It
should be noted that the low Coxsackie and
Adenovirus Receptor (CAR) and high-Mdm2 MG-
63 OS cell line was highly resistant to all CRAd
agents tested and required 100p.f.u./cell or more of
AdD24-p53 (14/19) to be eradicated. Thus, signifi-
cant improvements in CRAd agents are needed to
efficiently eliminate OS tumors with high levels of
Mdm2. In this regard, it seems that a p53 variant
resistant only to Mdm2 is not an optimal alternative
to p53 in a CRAd context. As E1B-55-kDa protein
binds residues 23–27 of p53,32 p53(14/19) is still a

candidate construct for inhibition and degradation.
It is tempting to speculate that substitution of
amino-acid residues 14 and 19 of p53 combined
with replacement of residues at position 24–28 by
the homologous residues from p73 might result in
resistance of chimeric p53 to degradation by Mdm2
and Ad proteins. Such modified proteins should
still retain the capability to transactivate p53-
responsive genes. Also, capsid modification of Ad
vector to target OS tumors expressing low levels of
CAR receptors should enhance the oncolytic poten-
tial of CRAd agents.

Enhancement of transduction efficiency
of OS cells with Ad vectors

Adenoviral vectors often transduce tumor cells
inefficiently due to low levels of adenovirus recep-
tor molecules on these cells. The adenovirus enters
cells in two separate steps. First, the knob domain of
the adenovirus fiber binds the primary attachment
receptor. Specifically, the Ad5 and Ad2 viruses
whose genetic backbone is mostly used for adeno-
viral vector construction bind to the CAR.240 The
second step is internalization into the target cell
which is mediated by an interaction of the Ad virion
with avb3 and avb5 integrins.241 The transduction
efficiency of Ad is known to correlate with levels of
primary and secondary receptors on the cell sur-
face.242,243 It has thus been recognized that improved
tumor cell transduction could be achieved via
redirection of the adenoviral vector to non-CAR
cellular entry pathways in CAR-deficient neoplastic
cells.244,245 This understanding has resulted in the
generation of Ad vectors possessing augmented
tumor cell transduction properties.246–249

A substantial fraction of OS tumors contain cells
expressing low levels of CAR and have thus
demonstrated resistance to conventional Ad vec-
tors.250,251 Witlox et al252 observed that primary OS
tumor cells express high levels of integrins avb3 and
avb5, and generated an adenoviral vector containing
an Arg-Gly-Asp (RGD-4C) integrin-targeting motif
(AdCMVlucRGD) in the fiber knob. They showed
that this retargeted Ad vector transduces OS cells
about 100-fold more efficiently than unmodified
Ad5. Testing a panel of Ad vectors recently
generated in our lab, we found that replacement of
the human knob domain of the Ad5 fiber with knob
domains of canine adenoviruses CAV1 and CAV2
resulted in an augmentation of transduction effi-
ciency of human OS cells (V Ternovoi, unpublished
data, 2005).253,254 Particularly interesting are results
with a fiber mosaic Ad5 vector encoding two fibers:
the s1 and the wt Ad5 fiber.255 This mosaic
transduces some primary OS cell lines even more
efficiently than AdCMVlucRGD (V Ternovoi, un-
published data, 2005).

Recently, selective targeting of cognate antigen has
been achieved via genetic incorporation of a cytosol
stable single chain fragments of antibody (scFv),
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known as an intrabody, into a deknobbed Ad
fiber.256 In this regard, a scFv derived from the
monoclonal antibody 8H9 (MAb 8H9) could be an
excellent candidate for specific targeting of OS cells.
The antigen epitope recognized by the 8H9 mouse
antibody is a putative cell surface glycoprotein
expressed on cell membranes in a broad spectrum
of tumors of neuroectodermal, mesenchymal and
epithelial origin, with restricted distribution in
normal tissues.257 Importantly, 28 of 29 human OS
have tested positive with 8H9 by immunohisto-
chemistry. Recombinant immunotoxin containing
the 8H9 scFv selectively killed cells that react with
the MAb 8H9 and produced regression of human
cancers growing in severe combined immunodefi-
cient mice that express the 8H9 antigen.258 Particu-
larly important, the dose that caused significant
regression in mice was well tolerated in monkeys.

Animal models

The immune system may play an important role in
the realization of p53’s overall antitumor potential.
As has been discussed above, p53 overexpression in
the context of viral vectors can induce a powerful
antitumor response. This response can even result
in the rejection of well-established tumors, but only
in the context of immunomodulation strategies
aimed at overcoming the tolerogenic activity of the
tumor microenvironment. These results are encoura-
ging, but they have been achieved using animals
with experimentally established tumors. Sponta-
neous tumors present a significantly more complex
challenge for induction of an efficient immune
response.259 They are engaged in the process of
successfully fighting against host defense systems
and are comprised of a population of heterogenous
tumor cells and recruited host stromal cells. Stromal
cells, including fibroblasts, inflammatory cells, and
vascular cells, generate a microenvironment that
actively fosters tumor growth and prevents an
immune response against these same tumor
cells.260–266 Together, the heterogenous tumor cell
populations, shaped by the immune system in the
process of multistep progression,267,268 and consid-
ering the tumor microenvironment which actively
induces the status of immune tolerance,269 allow
exceptional establishment of spontaneous tumors,
which experimentally established tumors cannot
reproduce. Thus, (1) generation of an efficient
antitumor immune response will be much harder
to achieve with naturally occurring tumors and (2)
to get clinically relevant information regarding
therapeutic efficacy of p53 tumor suppressor gene
therapy, its preclinical evaluation should be carried
out using immunocompetent animals with sponta-
neously developed OS.

An immunocompetent animal model could also
be helpful in finding a solution for the problem that
results from high immunogenicity of Ad vectors.
Adenoviruses induce a potent immune response

which significantly reduces efficiency of Ad-based
vectors.270,271 Ablation of immune response have
been shown to facilitate oncolytic virus intratumoral
propagation.249,272,273 Consequently, immunosup-
pression would be beneficial for CRAd intratumoral
spreading and expression of p53 in this context
should result in a significantly more potent tumor
cell killing via apoptogenic activity of p53. In
contradistinction, a realization exists that the tumor
suppressor effect of p53 relies on the induction of an
antitumor immune response. Thus immunosuppres-
sion should diminish antitumor potential. One of
the strategies to solve this problem might be
induction of temporal immunoablation in the first
phase of treatment followed by immunostimulation
to achieve an active Th1 immune response against
tumor antigens. In this scenario, the Ad vector will
get opportunity to achieve tumor penetration and
spread, kill a significant fraction of tumor cells, and
subsequent administration of immunopotentiating
agents with Th1-polarizing activity would augment
an antitumor response.

Canine OS bears striking resemblance to human
OS,274,275 and in our hands and others appears to be
a useful animal model for testing gene therapy
approaches because dogs share many physiological
features with humans.276 Greatly accelerated ki-
netics of tumor growth and progression in dogs
relative to humans creates the opportunity to assess
treatment outcomes in a reasonable time frame. To
study host–vector interactions and to develop
strategies facilitating Ad vector intratumoral repli-
cation in the face of an active immune system, we
generated a CRAd agent based on the canine
adenovirus type 2 genome.277 Interestingly, we have
also found that human adenovirus type 5 can
productively infect canine tumor cells of different
tissue origins. Furthermore, we provided evidence
of Ad5 lateral spreading in primary canine OS
cells.278 These findings raise the probability of
exploiting canine OS as a model for preclinical
analysis of candidate Ad5 based vectors designed
for human OS gene therapy.

Concluding remarks and future directions

OS is often resistant to conventional multimodal
therapy for malignant disease. Expression profiling
of chemoresistant OS has results in partial unmask-
ing of its resistance signature. The gene expression
profile and other properties of resistance to therapy
closely resemble properties of cancer stem cells.
Stem cell populations have been identified in a
range of hematopoietic and solid tumors, and the
capacity of these cells for unlimited self-renewal
and intrinsic resistance to cell death is now
recognized as important mechanisms of tumor
resistance to current therapy.

Adenovirus-mediated p53 tumor suppressor gene
therapy is a newer treatment modality with high
antitumor potential. In fact, this is a combined
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modality which employes several antitumor me-
chanisms: p53 ‘intrinsic’ and ‘extrinsic’ tumor
suppressor mechanisms and cytolytic activity of
replication competent Ad. However, analysis of the
peer-reviewed literature revealed that wt p53 and
currently used Ad vectors may not be efficient tools
for OS treatment because OS cells generally over-
express inhibitors of wt p53 and express low levels
of the CAR receptor. Recent advances in under-
standing the molecular mechanisms of p53’s proa-
poptotic action suggest that cointroduction of a
modified p53 gene resistant to inhibitors (Mdm2
and adenoviral protein E1B-55K) with the PTEN
gene into tumor cells should result in efficient
apoptosis induction in these tumor cells with a high
apoptotic threshold. The clinical relevance of this
therapeutic approach will be higher if infection of a
significant fraction of the tumor cells can be
achieved. Temporal immunoablation to facilitate
CRAd agent tumor targeting and intratumoral
spreading with subsequent immunopotentiation to
overcome the immunosuppressive activity of the
tumor microenvironment, while boosting the im-
mune response against tumor antigens, presents one
possible solution to this problem.

The complexity of factors influencing the final
outcome of this new modality and its reliance on
immune mechanisms requires employment of an
adequate model, and canine OS may represent the
ideal preclinical model for validation of adenovirus-
mediated p53 tumor suppressor gene therapy.
Further insights into the mechanisms of tumor
progression, tumor–stroma interactions and tumor–
immune system relationships, along with p53’s
biology, host–vector and virus-cell signal transduc-
tion interplay will result in more rationally designed
therapeutic strategies with increased clinical bene-
fits for OS patients.
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