Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Response of the climate system to atmospheric aerosols and greenhouse gases

Abstract

RECENTLY, Kiehl and Briegleb1 evaluated the radiative forcing associated with the capacity of atmospheric sulphate aerosols to reflect solar radiation back into space, and compared this with the forcing associated with atmospheric greenhouse gases. They found that the (negative) climate forcing by the aerosols has strong regional character, with the greatest forcing over Northern Hemisphere land surfaces, whereas the (positive) forcing by greenhouse gases is distributed almost equally between the hemispheres and varies mainly as a function of latitude. Here we present simulations of the response of the climate system to these two types of forcing. We find that the global response to aerosol forcing is regionally heterogeneous, with a distribution that is different from the forcing pattern. The simulations also imply that, for equal magnitudes of forcing, the temperature response is markedly greater for carbon dioxide than for aerosol forcing. We conclude that to predict the global mean climate response to global mean forcing, it is necessary to separate out the different components of the forcing to which the climate system is sensitive.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kiehl, J. T. & Briegleb, B. P. Science 260, 331–314 (1993).

    Article  ADS  Google Scholar 

  2. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Twomey, S. A., Piepgrass, M. & Wolfe, T. L. Tellus 36B, 356–366 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Wigley, T. M. L. Nature 339, 365–367 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Engardt, M. & Rodhe, H. Geophys. Res. Lett. 20, 117–120 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Walton, J. J., MacCracken, M. C. & Ghan, S. J. J. geophys. Res. 93, 8339–8354 (1988).

    Article  ADS  Google Scholar 

  8. Taylor, K. E. & Ghan, S. J. J. Clim. 5, 907–919 (1992).

    Article  ADS  Google Scholar 

  9. Covey, C. & Thompson, S. L. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 331–341 (1989).

    Article  Google Scholar 

  10. Cess, R. D. et al Science 245, 513–516 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Penner, J. E. et al. J. geophys. Res. 96, 959–990 (1991).

    Article  ADS  Google Scholar 

  12. Penner, J. E., Atherton, C. A. & Graedel, T. in Proc. 1st Int. Global Atmospheric Biospheric Chemistry (ed. Prinn, R. G.) (OHOLO Conf. Ser., Plenum, New York, 1994).

    Google Scholar 

  13. Spiro, P. A., Jacob, D. J. & Logan, J. A. J geophys. Res. 97, 6023–6036 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Benkovitz, C. Atmos. Envir. 16, 1551–1563 (1982).

    Article  CAS  Google Scholar 

  15. Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B. & Warren, S. G. Tellus 43AB, 152–163 (1991).

    ADS  Google Scholar 

  16. Senior, C. A. & Mitchell, J. F. B. J. Clim. 6, 393–418 (1993).

    Article  ADS  Google Scholar 

  17. Roeckner, E., Feichter, J. & Siebert, T. 2nd Int. Conf. Modelling Global Climate Change and Variability (abst.) 78 (Max-Planck-lnsitut für Meteoroiogie, Hamburg, 1992).

    Google Scholar 

  18. Wigley, T. M. L. & Raper, S. C. B. in Climate Change: Science. Impacts and Policy (eds. Jäger, J. & Ferguson, H. L.) 231–242 (Cambridge Univ. Press, 1991).

    Google Scholar 

  19. Hansen, J., J. geophys. Res. 93, 9341–9364 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Penner, J. E. et al. Bull. Am. met. Soc. 75, 375–400 (1994).

    Article  Google Scholar 

  21. Crutcher, H. L. & Meserve, J. M. NAVAIR 50-1C-52 (Office of Chief of Naval Ops, Washington DC, 1970).

  22. Jaeger, L., Berichte des Deutschen Wettersdeinstes 139, 1–38 (1976).

    Google Scholar 

  23. Rossow, W. B. & Schiffer, R. A. Bull. Am. met. Soc. 72, 2–20 (1991).

    Article  Google Scholar 

  24. Gloersen, P. & Campbell, W. J. J. geophys. Res. 93, 10666–10674 (1988).

    Article  ADS  Google Scholar 

  25. Taljaard, J. J., Van Loon, H., Crutcher, J. L. & Jenne, R. L. NAVAIR 50-1C-55 (Office of Chief of Naval Ops, Washington DC, 1969).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, K., Penner, J. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature 369, 734–737 (1994). https://doi.org/10.1038/369734a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369734a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing