Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pollen in marine sediments as an indicator of oxidation of organic matter

Abstract

ORGANIC carbon burial in marine sediments generates virtually all atmospheric oxygen, and provides a long-term sink for about 20% of all carbon1, 2 it is therefore important to understand the mechanisms controlling organic carbon preservation. There is a fraction of organic matter that is preserved under reducing conditions but which can be rapidly oxidized if exposed to molecular oxygen3–6. It is not clear, however, how much of the total organic matter preserved in marine sediments is oxygen-sensitive. Here we present results from a relict turbidite in the Madeira abyssal plain which suggest that pollen grains can be used as a sensitive tracer of oxygen-sensitive organic carbon. We find that pollen grains were completely degraded within 10 kyr in the presence of diffusively introduced oxygen, but were well preserved for at least 100 kyr under anoxic conditions. We also present pollen data from the Pacific Northwest continental shelf, which suggest that oxic degradation can explain the decrease in organic carbon with depth commonly observed in coastal sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berner, R. A. Palaeogeogr. Palaeoclim. Palaeoecol. 73, 97–122 (1989).

    Article  ADS  Google Scholar 

  2. Emerson, S. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. & Broecker, W. S.) 78–86 (American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  3. Cowie, G. L., Hedges, J. I., Prahl, F. G. & De Lange, G. J. Geochim. cosmochim. Acta (submitted).

  4. Buckley, D. E. & Cranston, R. E. Geochim. cosmochim. Acta 52, 2925–2939 (1988).

    Article  ADS  CAS  Google Scholar 

  5. De Lange, G. J., Jarvis, I. & Kuijpers, A. in Geology and Geochemistry of Abyssal Plains (eds Weaver, P. P. E. & Thomson, J.) 147–165 (Geological Spec. Publ. No. 31, Blackwell Scientific, Oxford, 1987).

    Google Scholar 

  6. Prahl, F. G., De Lange, G. J., Lyle, M. & Sparrow, M. A. Nature 341, 434–437 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Keil, R. G., Tsamakis, E., Fuh, C. G., Giddings, J. C. & Hedges, J. I. Geochim. cosmochim. Acta 58, 879–893 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Henrichs, S. M. Mar. Chem. 39, 119–149 (1987).

    Article  Google Scholar 

  9. Henrichs, S. M. & Reeburgh, W. S. Geomicrobiol. J. 5, 191–237 (1987).

    Article  CAS  Google Scholar 

  10. Müller, P. J. & Suess, E. Geochim. cosmochim. Acta 41, 941–949 (1977).

    Article  ADS  Google Scholar 

  11. Calvert, S. E. & Pederson, T. F. in Organic matter: Productivity, Accumulation, and Preservation in Recent and Ancient Sediments (eds Whelan, J. K. & Farrington, J. W.) (Columbia Univ. Press, 1992).

    Google Scholar 

  12. Demaison, G. J. & Moore, E. T. Bull. Am. Ass. Petrol. Geol. 8, 1179–1209 (1980).

    Google Scholar 

  13. Lee, G. Geochim. cosmochim. Acta 56, 3323–3335 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Agwu, C. O. C. & Beug, H.-J. in Paleoecology of Africa and the Surrounding Islands Vol. 16 (eds Van Zinderen Bakker, E. M. Sr & Coetzee, J. A.) 37–52 (Balkema, Vermont, 1984).

    Google Scholar 

  15. Dupont, L. M. & Beung, H.-J. in Paleoecology of Africa and the Surrounding Islands Vol. 22 (ed. Heine, K.) 135–155 (Balkema, Vermont, 1991).

    Google Scholar 

  16. Hooghiemstra, H. in Paleoecology of Africa and the Surrounding Islands Vol. 16 (ed. Van Zinderen Bakker, E. M. Sr & Coetzee, J. A.) 37–52 (Balkema, Vermont, 1988).

    Google Scholar 

  17. Elsik, W. C. in Sporopollenin (eds Brooks, J., Grant, P. R., Van Gijzel, P. & Shaw, G.) (Academic, London, 1971).

    Google Scholar 

  18. Traverse, A. Pateopalynology (Unwin Hyman, London, 1988).

    Google Scholar 

  19. Blackmore, S. & Knox, R. B. Microspores, Evolution and Ontogeny (Academic, London, 1990).

    Google Scholar 

  20. Heusser, L. in Pollen Records of Late-Quaternary North American Sediments (eds Bryant, V. M. Jr & Holloway, R. G.) (American Association of Stratigraphic Palynologists, Dallas, Texas, 1985).

    Google Scholar 

  21. Heusser, L. & Balsam, W. L. Quat. Res. 7, 45–62 (1977).

    Article  Google Scholar 

  22. Baker, E. T. J. sedim. Petrol. 43, 812–821 (1973).

    Google Scholar 

  23. Carpenter, R. & Peterson, M. L. in Coastal Oceanography of Washington and Oregon (eds Landry, M. R. & Hickey, B. M.) 367–485 (Oceanography Ser., Elsevier, Amsterdam, 1989).

    Book  Google Scholar 

  24. Prahl, F. G. Geochim. cosmochim. Acta 49, 2533–2539 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Archer, D. thesis, Univ. Washington (1990).

  26. Gross, G. thesis, Univ. Washington (1965).

  27. Birks, H. J. B. & Birks, H. H. Quaternary Palaeoecology (Arnold, London, 1980).

    Google Scholar 

  28. Brown, T. A., Nelson, D. E., Matthews, R. W., Vogel, J. S. & Southon, J. R. Quat. Res. 32, 205–212 (1989).

    Article  CAS  Google Scholar 

  29. Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Hafner, New York, 1992).

    Google Scholar 

  30. Cwynar, L. C., Burden, E. & McAndrews, J. H. Can. J. Earth Sci. 16, 1115–1120 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Stockmarr, J. Pollen Spores 13, 615–621 (1972).

    Google Scholar 

  32. Grundmanis, V. & Murray, J. W. Geochim. cosmochim. Acta 46, 1101–1120 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keil, R., Hu, F., Tsamakis, E. et al. Pollen in marine sediments as an indicator of oxidation of organic matter. Nature 369, 639–641 (1994). https://doi.org/10.1038/369639a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369639a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing