Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of C. elegans cell death protein CED-9 by an ammo-acid substitution in a domain conserved in Bcl-2

Abstract

THE Caenofhabditis elegans gene ced-9 and the human proto-oncogene bcl-2, both of which protect cells from programmed cell death, are members of the same gene family1–11, ced-9 and bcl-2 were discovered because of the effects of dominant gain-of-function mutations12–14. Such bcl-2 mutations, which are commonly found in follicular lymphoma, are translocations that result in over-expression of a normal Bcl-2 protein in B cells1,13–16. Here we report that, by contrast, the ced-9(n1950) gain-of-function muta-tion affects the open reading frame of ced-9and results in a glycine-to-glutamate substitution in a region highly conserved among all ced-9/ bcl-2 family members. We conclude that this glycine has an important function in ced-9 regulation, and we suggest that altera-tion of this glycine in other members of the ced-9/bcl-2 family might lead to oncogenic activation. We also present genetic evi-dence suggesting that the CED-9 protein might exist in two distinct forms that have opposite effects on cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cleary, M. L., Smith, S. D. & Sklar, J. Cell 47, 19–28 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Pearson, G. R. et al. Virology 160, 151–161 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Oltvari, Z. N., Milliman, C. L. & Korsmeyer, S. J. Cell 74, 609–619 (1993).

    Article  Google Scholar 

  4. Boise, L. H. et al. Cell 74, 597–608 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P. & Craig, R. W. Proc. natn. Acad. Sci. U.S.A. 90, 3516–3520 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Lin, E. Y., Orlofsky, A., Berger, M. S. & Prystowsky, M. B. J. Immun. 151, 1979–1988 (1993).

    CAS  PubMed  Google Scholar 

  7. Hengartner, M. O. & Horvitz, H. R. Cell 76, 665–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Neilan, J. G. et al. J. Virol. 67, 4391–4394 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Albrecht, J.-C. et al. J. Virol. 66, 5047–5058 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams, G. T. & Smith, C. A. Cell 74, 777–779 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Hergartner, M. O. & Horvitz, H. R. Curr. Opin. Genet. Dev. (in the press).

  12. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Nature 356, 494–499 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Yunis, J. J. et al. New Engl. J. Med. 307, 1231–1236 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Science 226, 1097–1099 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Tsujimoto, Y. & Croce, C. M. Proc. natn. Acad. Sci. U.S.A. 83, 5214–5218 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Seto, M. et al. EMBO J. 7, 123–131 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vaux, D. L., Weissman, I. L. & Kim, S. K. Science 258, 1955–1957 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Yuan, J. & Horvitz, H. R. Development 116, 309–320 (1992).

    CAS  PubMed  Google Scholar 

  19. Yin, X.-M., Oltvai, Z. N. & Korsmeyer, S. J. Nature 369, 321–323 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Korsmeyer, S. J., Shutter, J. R., Veis, D. J., Merry, D. E. & Oltvai, Z. N. Semin. Cancer Biol. 4, 327–333 (1993).

    CAS  PubMed  Google Scholar 

  21. Ellis, H. M. & Horvitz, H. R. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Cazals-Hatem, D. L., Louie, D. C., Tanaka, S. & Reed, J. C. Biochim. biophys. Acta 1143, 109–113 (1992).

    Article  Google Scholar 

  23. Eguchi, Y., Ewert, D. L. & Tsujimoto, Y. Nucleic Acids Res. 20, 4187–4192 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avery, L. & Horvitz, H. R. Cell 51, 1071–1078 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sulston, J. E. & Horvitz, H. R. Devl Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  26. Negrini, M., Silini, E., Kozak, C., Tsujimoto, Y. & Croce, C. M. Cell 49, 455–463 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Files, J. G., Carr, S. & Hirsh, D. J. molec. Biol. 164, 355–375 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Mello, C. C., Kramer, J. M., Stinchcomb, D. T. & Ambros, V. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengartner, M., Horvitz, H. Activation of C. elegans cell death protein CED-9 by an ammo-acid substitution in a domain conserved in Bcl-2. Nature 369, 318–320 (1994). https://doi.org/10.1038/369318a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369318a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing