Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Estimate of the intergalactic infrared radiation field from γ-ray observations of the galaxy Mrk421

Abstract

THE magnitude of the intergalactic infrared radiation field (IIRF) is of fundamental importance to investigations of the evolution of galaxies. Bursts of star formation, which seem to be critically important to galaxy evolution, are characterized by large infrared luminosities1, yet we have little knowledge of the frequency and intensity of starbursts in the early Universe. Unfortunately, direct observational determinations of the IIRF are plagued by the difficulty of separating the extragalactic emission from Galactic foreground radiation and the zodiacal light in the Solar System, and have so far produced only upper limits that are far above theoretical expectations2. We have previously proposed3 a way to use ground-based observations of high-energy γ-rays to probe the IIRF, and here we apply our method to the spectrum4,5 of the BL Lac object Mrk421. The intensity we derive for the IIRF is consistent with the conversion of at least 30% of the energy from stellar nucleosynthesis to infrared radiation, both from emission by cool stars and as a result of absorption and re-emission by interstellar dust grains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Soifer, B. T., Houck, J. R. & Neugebauer, G. Ann. Rev. Astr. Astrophys. 25, 187–230 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Hauser, M. G. et al. in After the First Three Minutes (eds Holt, S. S., Bennett C. L. and Trimble, V.) 161–178 (AIP Conf. Proc. No. 222, Am. Inst. Phys., New York, 1990).

    Google Scholar 

  3. Stecker, F. W., de Jager, O. C. & Salamon, M. H. Astrophys. J. 390, L49–L52 (1992).

    Article  ADS  Google Scholar 

  4. Mohanty, G. et al. in Proc. 23rd Int. Cosmic Ray Conf. Vol. 1 440–443 (Univ. Calgary Press, Calgary, 1993).

    Google Scholar 

  5. Lin, Y. C. et al. Astrophys. J. 401, L61–L64 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Weekes, T. C. Phys. Rep. 160, 1–121 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Stecker, F. W. & de Jager, O. C. Astrophys. J. 415, L71–L73 (1993).

    Article  ADS  Google Scholar 

  8. Kerrick, A. D. et al. Proc. 23rd Int. Cosmic Ray Conf. Vol. 1 408–411 (Univ. Calgary Press, Calgary, 1993).

    Google Scholar 

  9. Stecker, F. W., Puget, J. L. & Fazio, G. G. Astrophys. J. 214, L51–L54 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Lewis, D. A. et al. Proc. 23rd Int. Cosmic Ray Conf. Vol. 1 279–282 (Univ. Calgary Press, Calgary, 1993).

    Google Scholar 

  11. Ghisellini, G., Maraschi, L. & Treves, A. Astr. Astrophys. 146, 204–212 (1985).

    ADS  CAS  Google Scholar 

  12. Dermer, C. D. & Schliskeiser, R. Astrophys. J. 416, 458–484 (1993).

    Article  ADS  Google Scholar 

  13. Bloom, S. D. & Marscher, A. P. in Compton Gamma-Ray Observatory (eds Friedlander, M. Gehrels, N. & Macomb, D. J.) 578–582 (AIP Conf. Proc. No. 280, Am. Inst. Phys, New York, 1993).

    Google Scholar 

  14. Zdziarski, A. A. & Krolik, J. H. Astrophys. J. 409, L33–L36 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Mather, J. C. Optical Engng 21, 769–778 (1982).

    Article  ADS  Google Scholar 

  16. Salamon, M. H., Stecker, F. W. & de Jager, O. C. Astrophys. J. 423, L1–L4 (1994).

    Article  ADS  Google Scholar 

  17. Protheroe, R. J. & Stanev, T. Mon. Not. R. astr. Soc. 264, 191–200 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Aharonian, F. A., Coppi, P. & Volk, H. J. Proc. 23rd Int. Cosmic Ray Conf. Vol. 1 451–454 (Univ. Calgary Press, Calgary, 1993).

    Google Scholar 

  19. Vallee, J. P. Astrophys. J. 360, 1–6 (1990).

    Article  ADS  Google Scholar 

  20. Amenomori, M. et al. Proc. 23rd Int. Cosmic Ray Conf. Vol. 1 412–415 (Univ. Calgary Press, Calgary, 1993).

    Google Scholar 

  21. Dube, R. R., Wickes, W. C. & Wilkinson, D. T. Astrophys J. 232, 333–340 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Matsumoto, T., Akiba, M. & Murakami, H. Astrophys. J. 332, 575–595 (1988).

    Article  ADS  Google Scholar 

  23. Tyson, J. A. in The Galactic and Extragalactic Background Radiation (eds Bowyer, S. & Leinert C.) 245–256 (Int. Astr. Un., Kluwer Academic, Dordrecht, 1990).

    Book  Google Scholar 

  24. Yoshii, Y. & Takahara, F. Astrophys. J. 326, 1–6 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jager, O., Stecker, F. & Salamon, M. Estimate of the intergalactic infrared radiation field from γ-ray observations of the galaxy Mrk421. Nature 369, 294–296 (1994). https://doi.org/10.1038/369294a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369294a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing