Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of variations in super-saturation on the formation of cloud condensation nuclei

Abstract

SULPHATE aerosols can act as nuclei for cloud formation, thereby cooling the climate by increasing the Earth's albedo1–5; however the magnitude of this effect is very uncertain3,6. Recently, Langner et al.7 calculated that at most 6% of the anthropogenic sulphur emission forms new particles, while 44% adds mass to existing sulphate particles activated in clouds. It was therefore suggested7,8 that previous studies1,2,9 had overestimated the effect of sulphate aerosols on climate. Although it has been proposed that sub-CCN-size particles can grow to CCN-size in clouds7,10, this was thought to require the large supersaturations present in cumuliform clouds, rather than the smaller values characteristic of marine stratiform clouds, which are most important for radiative forcing. Here we show that natural variability of even low average supersaturations allows particles as small as 0.015 um to grow to become CCN. This process can quadruple the CCN concentration and significantly increase the corresponding aerosol effect on climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Twomey, S. A., Piepgrass, M. & Wolfe, T. L. Tellus 36b, 356–366 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Kaufman, Y. J., Fraser, R. S. & Mahoney, R. J. Clim. 4, 578–588 (1991).

    Article  ADS  Google Scholar 

  3. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Leaitch, W. R., Isaac, G. A., Strapp, J. W., Banic, C. M. & Wiebe, H. A. J. geophys. Res. 97, 2463–2474 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Hansen, J. E. & Lacis, A. A. Nature 346, 713–719 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Twomey, S. A. Atmos. Envir. 25A, 2435–2442 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Langner, J., Rodhe, H., Crutzen, P. J. & Zimmermann, P. Nature 359, 712–715 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Kiehl, J. T. & Briegleb, B.P. Science 260, 311–314 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Wigley, T. M. L. Nature 339, 355–357 (1989).

    Article  ADS  Google Scholar 

  10. Hegg, D. A. Geophys. Res. Let. 17, 2165–2168 (1990).

    Article  ADS  Google Scholar 

  11. Twomey, S. A., Atmospheric Aerosol (Elsevier, Amsterdam, 1977).

    Google Scholar 

  12. Hobbs, P. V. Q. JI. R. met. Soc. 97, 263–271 (1971).

    Article  ADS  Google Scholar 

  13. Hoppel, W. A., Fitzgerald, J. W., Ferick, G. M. & Larson, R. E. J. geophys. Res. 95, 3659–3686 (1990).

    Article  ADS  Google Scholar 

  14. Hegg, D. A., Ferek, R. J. & Hobbs, P. V. J. geophys. Res. 98, 8841–8846 (1993).

    Article  ADS  Google Scholar 

  15. Whitby, K. T. Atmos. Envir. 12, 135–159 (1978).

    Article  CAS  Google Scholar 

  16. Lelieveld, J. & Heintzenberg, J. Science 258, 117–120 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Hegg, D. A., Yuen, P.-F. & Larson, T. V. J. geophys. Res. 97, 12927–12933 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Ayers, G. P. & Larson, T. V. J. atmos. Chem. 11, 143–167 (1990).

    Article  CAS  Google Scholar 

  19. Schwartz, S. E. Atmos. Envir. 22, 2491–2499 (1988).

    Article  CAS  Google Scholar 

  20. Schwartz, S. E. in The Chemistry of Acid Rain: Sources and Atmospheric Processes (eds Johnson, R. W. & Gordon, G. E.) Ch. 8, 94–108 (ACS Symp. Ser. No. 349, Atmospheric Chemistry Soc., 1987).

    Google Scholar 

  21. Hoppel, W. A., Frick, G. M. & Fitzgerald, J. W. Aerosol Sci. Tech. 20, 1–30 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Clarke, A. D., Ahlquist, N. C. & Covert, D. S. J. geophys. Res. 92, 4179–4190 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Paluch, I. R. & Knight, C. A. J. Atmos. Sci. 41, 1801–1815 (1993).

    Article  ADS  Google Scholar 

  24. Kaufman, Y. J. & Chou, M.-D. J. Clim. 6, 1241–1252 (1993).

    Article  ADS  Google Scholar 

  25. Novakov, T. & Penner, J. E. Nature 365, 823–826 (1994).

    Article  ADS  Google Scholar 

  26. Hegg, D. A., Hobbs, P. V., Ferek, R. J. & Waggoner, A. P. J. geophys. Res. (Submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, Y., Tanré, D. Effect of variations in super-saturation on the formation of cloud condensation nuclei. Nature 369, 45–48 (1994). https://doi.org/10.1038/369045a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369045a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing