Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth of oriented molecular sieve crystals on organophosphonate films

Abstract

THE successful construction of complex organic/inorganic bio-mimetic systems1-3has demonstrated the great power of supra-molecular pre-organization and templating in controlling crystal growth4. For instance, polar organic surfaces or surface-attached polar groups can induce the formation of thin films of iron oxide5. It would be of great interest, for the design of novel devices such as sensors or catalyst membranes6, to be able to control the growth on surfaces of porous crystals with oriented channels: such channels could, for example, control the access of molecules to the surface of a field-effect transistor in a sensor device. Films and membranes with non-oriented channels have been prepared by depositing or growing zeolite7–12 crystals on metal or metal-oxide supports13–21; in one case21, pre-grown crystals of an aluminophosphate zeolite were oriented by application of an electric field. Here we report the oriented growth of crystals of a zinco-phosphate zeolite on gold surfaces modified with metal phosphonate multilayer films. We attribute the high degree of orientation (>90%) to a strong affinity between the phosphonic acid groups of the phosphate multilayer and the (111) faces of the growing crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mann, S. Nature 365, 499–505 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Mann, S. et al. Science 261, 1286–1292 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Mann, S. et al. Mater. Res. Soc. Bull. 17, 32–36 (1992).

    Article  CAS  Google Scholar 

  4. Weissbuch, I., Addadi, L., Lahav, M. & Leiserowitz, L. Science 253, 637–645 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Rieke, P. C., Tarasevich, B. J., Bentjen, S. B., Fryxell, G. E. & Campbell, A. A. in Supramolecular Architecture (ed. Bein, T.) 61–75 (ACS Symp. Ser. No. 499, Am. Chem. Soc., Washington DC, 1992).

    Book  Google Scholar 

  6. Ozin, G. A., Kuperman, A. & Stein, A. Angew. Chem. int. Edn engl. 28, 359–376 (1989).

    Article  Google Scholar 

  7. Breck, D. W. Zeolite Molecular Sieves (Krieger, Malabar, Florida, 1984).

    Google Scholar 

  8. Barrer, R. M. Hydrothermal Chemistry of Zeolites (Academic, London, 1982).

    Google Scholar 

  9. van Bekkum, H., Flanigen, E. M. & Jansen, J. C. (eds) Introduction to Zeolite Science and Practice (Stud. Surf. Sci. Catal. No. 58, Elsevier, 1991).

  10. Davis, M. E. Acct. Chem. Res. 26, 111–115 (1993).

    Article  CAS  Google Scholar 

  11. Davis, M. E. & Lobo, R. L. Chem. Mater. 4, 756–768 (1992).

    Article  CAS  Google Scholar 

  12. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types 3rd edn (Butterworth-Heinemann, London, 1992).

    Google Scholar 

  13. Myatt, G. J., Budd, P. M., Price, C. & Carr, S. W. J. Mater. Chem. 2, 1103–1104 (1992).

    Article  CAS  Google Scholar 

  14. Anderson, M. W., Pachis, K. S., Shi, J. & Carr, S. W. J. Mater. Chem. 2, 255–256 (1992).

    Article  CAS  Google Scholar 

  15. Davis, S. P., Borgstedt, E. V. R. & Suib, S. L. Chem. Mater. 2, 712–719 (1990).

    Article  CAS  Google Scholar 

  16. Creasy, K. E. et al. in Mater. Res. Soc. Symp. Proc. Vol. 233 (eds Bedard, R. L. et al.) 157–167 (Mater. Res. Soc., Pittsburgh, 1991).

    Google Scholar 

  17. Tsikoyiannis, J. G. & Haag, W. O. Zeolites 12, 126–130 (1992).

    Article  CAS  Google Scholar 

  18. Geus, E. R., Den Exter, M. J. & van Bekkum, H. J. chem. Soc., Faraday Trans. 88, 3101–3109 (1992).

    Article  CAS  Google Scholar 

  19. Bein, T., Brown, K., Frye, G. C. & Brinker, C. J. J. Am. chem. Soc. 111, 7640–7641 (1989).

    Article  CAS  Google Scholar 

  20. Yan, Y. & Bein, T. J. phys. Chem. 96, 9387–9393 (1992).

    Article  CAS  Google Scholar 

  21. Caro, J. et al. Adv. Mater. 4, 273–276 (1992).

    Article  CAS  Google Scholar 

  22. Putvinski, T. M. et al. Langmuir 6, 1567–1571 (1990).

    Article  CAS  Google Scholar 

  23. Katz, H. E. et al. Science 254, 1485–1487 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Frey, B. L., Hanken, D. G. & Corn, R. M. Langmuir 9, 1815–1820 (1993).

    Article  CAS  Google Scholar 

  25. Chidsey, C. E. D. & Loiacono, D. N. Langmuir 6, 682–691 (1991).

    Article  Google Scholar 

  26. Lee, H., Kepley, L. J., Hong, H. G., Akhter, S. & Mallouk, T. E. J. phys. Chem. 92, 2597–2601 (1988).

    Article  CAS  Google Scholar 

  27. Gier, T. E. & Stucky, G. D. Nature 349, 508–510 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Ward, M. D. & Buttry, D. A. Science 249, 1000–1007 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Bein, T. Growth of oriented molecular sieve crystals on organophosphonate films. Nature 368, 834–836 (1994). https://doi.org/10.1038/368834a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368834a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing