Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hox11 controls the genesis of the spleen

Abstract

MANY homeobox genes are clustered in a linear array along a chromosome, reflecting their ordered expression along the anterior-posterior axis of the embryo1. Expression patterns2,3 as well as grafting4, ectopic expression5,6 and loss-of-function experiments7–11 suggest that the Hox genes encode a combinatorial system of positional specification along that axis. In contrast, the function of orphan homeobox genes12 located at sites outside the four mammalian Hox clusters is less well understood. To assess the functional role of the orphan homeobox gene Hox11, we have generated Hox11-deficient mice through gene targeting. Hox11-/- mice have no spleen, but otherwise appear normal. Hox11 is normally expressed in the splenic anlage arising from the splanchnic mesoderm. Hox11-/- embryos have no cellular organization at the site of splenic development but all other splanchnic derivatives develop normally. Hox11 controls the genesis of a single organ, providing new insight into the genetic regulation of morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scott, M. P., Tamkun, J. W. & Hartzell, G. W. Biochim. biophys. Acta 989, 25–48 (1989).

    CAS  PubMed  Google Scholar 

  2. Graham, A., Papalopulu, N. & Krumlauf, R. Cell 57, 367–378 (1989).

    Article  CAS  Google Scholar 

  3. Duboule, D. & Dollé, P. EMBO J. 8, 1497–1505 (1989).

    Article  CAS  Google Scholar 

  4. Guthrie, S. et al. Nature 356, 157–159 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Balling, R., Mutter, G., Gruss, P. & Kessel, M. Cell 58, 337–347 (1989).

    Article  CAS  Google Scholar 

  6. Kessel, M. & Gruss, P. Cell 67, 89–104 (1991).

    Article  CAS  Google Scholar 

  7. Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Cell 66, 1105–1119 (1991).

    Article  CAS  Google Scholar 

  8. Chisaka, O., Musci, T. S. & Capecchi, M. R. Nature 355, 516–520 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Chisaka, O. & Capecchi, M. R. Nature 350, 473–479 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Le Mouellic, H., Lallem, Y. & Brulet, P. Cell 69, 251–264 (1992).

    Article  CAS  Google Scholar 

  11. Ramirez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R. & Bradley, A. Cell 73, 279–294 (1993).

    Article  CAS  Google Scholar 

  12. Scott, M. P. Cell 71, 551–553 (1992).

    Article  CAS  Google Scholar 

  13. Hatano, M., Roberts, C. W. M., Minden, M., Crist, W. M. & Korsmeyer, S. J. Science 253, 79–82 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Kennedy, M. A. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8900–8904 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Lu, M., Gong, Z. Y., Shen, W. F. & Ho, A. D. EMBO J. 10, 2905–2910 (1991).

    Article  CAS  Google Scholar 

  16. Dube, I. D. et al. Blood 78, 2996–3002 (1991).

    CAS  PubMed  Google Scholar 

  17. Hatano, M., Roberts, C. W. M., Kawabe, T., Shutter, J. & Korsmeyer, S. J. Blood 80, suppl. 355a (1992).

  18. Raju, R. et al. Mech. Dev. 44, 51–64 (1993).

    Article  CAS  Google Scholar 

  19. Koyama, A. Acta haematol. Jpn 23, 20 (1960).

    Google Scholar 

  20. Rugh, R. The Mouse: Its Reproduction and Development (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  21. Green, M. C. Devl Biol. 15, 62–89 (1967).

    Article  CAS  Google Scholar 

  22. Manseau, L. J. & Schupbach, T. Trends Genet. 5, 400–405 (1989).

    Article  CAS  Google Scholar 

  23. Niehrs, C. & De Robertis, E. M. Curr. Opin. Genet. Dev. 2, 550–555 (1990).

    Article  Google Scholar 

  24. Stern, C. D. Curr. Opin. Genet. Dev. 2, 556–561 (1990).

    Article  Google Scholar 

  25. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  26. Kreidberg, J. A. et al. Cell 74, 679–691 (1993).

    Article  CAS  Google Scholar 

  27. Waldman, J. D., Rosenthal, A., Smith, A. L., Shurin, S. & Nadas, A. S. J. Pediatr. 90, 555–559 (1977).

    Article  CAS  Google Scholar 

  28. Carter, T. C. Mouse News Lett. 11, 16 (1954).

    Google Scholar 

  29. Rabbitts, T. H. Cell 67, 641–644 (1991).

    Article  CAS  Google Scholar 

  30. Wilkinson, D. G. in In situ hybridization: A Practical Approach (ed. Wilkson, D.) 75–84 (IRL, Oxford, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, C., Shutter, J. & Korsmeyer, S. Hox11 controls the genesis of the spleen. Nature 368, 747–749 (1994). https://doi.org/10.1038/368747a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368747a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing