Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin

Abstract

MYOSINS are a functionally divergent group of mechanochemical enzymes involved in various motile activities in cells1. Despite a high degree of conservation in the amino-acid sequence of the 130K motor domain2,3 (head region) of the molecule, there are large differences in the enzymatic and motile activities (Tables 1 and 2) of myosins from diverse species and cell types. However, the degree of conservation is not uniform throughout the head sequence4; therefore, one reasonable hypothesis is that the functional differences between myosins derive from the poorly conserved areas. The most prominent divergent region occurs at the 50K/20K junction, a region of the molecule sensitive to proteolytic digestion5 and a binding site for actin6–12. We have now constructed chimaeras of this region of myosin by substituting the 9-amino-acid Dictyostelium junction region with those from myosins from other species and find that the actin-activated ATPase correlates well with the activity of the myosin from which the junction region was derived. Our results suggest that this region, likely to be part of the myosin head that interacts directly with actin10,13,14, is important in determining the enzymatic activity of myosin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spudich, J. A. Cell Regul. 1, 1–11 (1989).

    Article  CAS  Google Scholar 

  2. Toyoshima, Y. Y. et al. Nature 328, 536–539 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Warrick, H. M. & Spudich, J. A. A. Rev. Cell Biol. 3, 379–421 (1987).

    Article  CAS  Google Scholar 

  5. Balint, M., Wolf, I., Tarcsafavli, A., Gergely, J. & Sreter, F. A. Archs Biochem Biophys. 190, 793–799 (1978).

    Article  CAS  Google Scholar 

  6. Mornet, D., Pantel, P., Audemard, E. & Kassab, R. Biochem. biophys. Res. Commun. 89, 925–932 (1979).

    Article  CAS  Google Scholar 

  7. Yamamoto, K. & Sekine, T. J. Biochem. 86, 1863–1868 (1979).

    Article  CAS  Google Scholar 

  8. Botts, J., Muhlrad, A., Takashi, R. & Morales, M. F. Biochemistry 21, 6903–6905 (1982).

    Article  CAS  Google Scholar 

  9. Sutoh, K. Biochemistry 22, 1579–1585 (1983).

    Article  CAS  Google Scholar 

  10. Yamamoto, K. Biochemistry 28, 5573–5577 (1989).

    Article  CAS  Google Scholar 

  11. DasGupta, G. & Reisler, E. J. molec. Biol. 207, 833–836 (1989).

    Article  CAS  Google Scholar 

  12. Sutoh, K., Ando, M., Sutoh, K. & Toyoshima, Y. Y. Proc. natn. Acad. Sci. U.S.A. 88, 7711–7714 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Rayment, I. et al. Science 261, 58–65 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Schroeder, R. R. et al. Nature 364, 171–174 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Pope, B., Hoh, J. F. Y. & Weeds, A. FEBS Lett. 118, 205–208 (1980).

    Article  CAS  Google Scholar 

  16. Schwartz, K. et al. J. molec. cell. Cardiol. 13, 1071–1075 (1981).

    Article  CAS  Google Scholar 

  17. McNally, E. M., Kraft, R., Bravo-Zehnder, M., Taylor, D. A. & Leinwand, L. A. J. molec. Biol. 210, 665–671 (1989).

    Article  CAS  Google Scholar 

  18. Knecht, D. A. & Loomis, W. F. Science 236, 1081–1086 (1987).

    Article  ADS  CAS  Google Scholar 

  19. De Lozanne, A. & Spudich, J. A. Science 236, 1086–1091 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Barany, M. J. gen. Physiol. 50 (suppl.), 197–218 (1967).

    Article  Google Scholar 

  21. Lymn, R. W. & Taylor, E. W. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  22. Stein, L. A., Schwarz, R. P. Jr, Chock, P. B. & Eisenberg, E. Biochemistry 18, 3895–3909 (1979).

    Article  CAS  Google Scholar 

  23. Rosenfeld, S. S. & Taylor, E. W. J. biol. Chem. 10, 11920–11929 (1984).

    Google Scholar 

  24. Uyeda, T. Q. P., Kron, S. J. & Spudich, J. A. J. molec. Biol. 214, 699–710 (1990).

    Article  CAS  Google Scholar 

  25. White, H. D., Belknap, B. & Jiang, W. J. biol. Chem. 268, 10039–10045 (1993).

    CAS  PubMed  Google Scholar 

  26. Shimizu, T. et al. J. Cell Biol. 112, 1189–1197 (1991).

    Article  CAS  Google Scholar 

  27. Sellers, J. R., Eisenberg, E. & Adelstein, R. S. J. biol. Chem. 257, 13880–13883 (1982).

    CAS  PubMed  Google Scholar 

  28. Warshaw, H. M., Derosiers, J. M., Work, S. S. & Trybus, K. M. J. Cell Biol. 111, 453–463 (1990).

    Article  CAS  Google Scholar 

  29. Warshaw, D., Peterson, J. & Alpert, N. Biophys. J. 59, 186a (1991).

    Article  Google Scholar 

  30. Sussman, M. in Dictyostelium Discoideum: Molecular Approaches to Cell Biology (ed.Spudich, J. A.) 9–29 (Academic, Orlando, 1987).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uyeda, T., Ruppel, K. & Spudich, J. Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature 368, 567–569 (1994). https://doi.org/10.1038/368567a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368567a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing