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NEWS AND VIEWS 

Modelling high-T superconductivity? c 

The ubiquitous Ising lattice has been used to model competitive ordering forces such as may account for some of 
the properties of the copper-oxide planes in ceramic superconductors. 

THE Ising lattice is not so much a model as a 
notation, it now appears. Originally, in the 
1920s, the idea was to make a model of 
magnetic materials, ferromagnets for exam
ple. The procedure was straightforward: rep
resent the structure of the solid by an appro
priate geometrical lattice, imagine that there 
is a magnetic dipole at each of its vertices, 
define some rule for calculating the total 
energy of the system from the orientations 
of the magnetic dipoles at all possible pairs 
of vertices and then treat the problem as one 
in statistical mechanics. The hope was that 
it would be possible to show that such a 
model would behave as a real ferromagnet 
does; in other words, that there would be a 
critical temperature (the Curie temperature) 
below which magnetic order would be the 
rule, above which it would not be. 

The frustration ofthis ambition has been 
amply described. In general, even with sim
plifYing assumptions about the energy of 
interactions between differently located lat
tice sites, real three-dimensional problems 
are not soluble. Even in two dimensions (as 
with crystalline solids in a plane, Langmuir
Blodgett films perhaps), only drastic simpli
fication will allow analytical solutions of 
model problems. One powerful simplifica
tion is to suppose that only magnetic elements 
at literally nearest-neighbour vertices con
tribute to the interaction energy. (On a square 
lattice, for example, interactions across the 
diagonal would be counted as zero.) Then, 
most order-disorder problems on reasonably 
shaped lattices can be solved exactly. 

But do not the simplifying assumptions 
empty the baby with the bath water, so to 
speak? A real ferromagnetic material, say a 
crystal of iron, cannot really be discussed as 
if it were nothing but a collection of mag
netic dipoles sited on the vertices of a 
geometrical lattice, each of which interacts 
energetically only with its nearest neigh
bours in a strictly classical fashion. Indeed, 
atoms in such a crystal acquire magnetic 
moments (other than those of their nuclei) 
by losing electrons to the Fermi sea, which 
is the means by which the crystals are able to 
conduct electricity. 

The obvious snag is that the ions left 
behind continue to interact with the electron 
sea collectively, which means that, at the 
very least, the problem of ferromagnetism 
boils down to that of calculating the expec
tation value of the total electron spin for a 
system of atoms capable of being ionized 
and which are located on the vertices of a 
regular lattice. That is a problem in quantum 
mechanics, which leads to what is called the 
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Hubbard lattice, a system of quantum spins 
in a regular array. To tell from the literature, 
people are still enumerating the eigenstates 
of such a system. It is even less soluble than 
the Ising lattice. 

That does not mean that the Ising lattice 
has been of no value. On the contrary, it is a 
literally exact model of order-disorder in, 
say, a-brass (Zn to Cu in the ratio 3:1). 
Measurements show that, in the ordered 
(and hardened) state, extra energy is needed 
to melt to solid than when the atoms are 
randomly arranged. The other side of that 
coin is that it is possible to measure the 
latent heat of the phase transition for the 
disordered to the ordered state when a sam
ple in the disordered solid is annealed. That 
is something tangible, technically a first
order transition. 

The more substantial interest of the Ising 
lattice has been, over the past several dec
ades, heuristic, as the saying goes. Allowing 
for the simplifications inherent in any at
tempt at analytical solutions, it nevertheless 
emerges clearly that three-dimensional sys
tems allow of first-order phase transitions, 
the simpler two-dimensional systems allow 
of only second-ordertransitions (where there 
is a specific heat anomaly, but no latent heat, 
at some critical temperature) and that sim
ple one-dimensional systems in which only 
nearest neighbours interact do not allow 
order-disorder phase transitions in either 
sense. (They cannot, for a single break-point 
in a linear lattice will destroy long-range 
order.) None of that is surprising, but it is 
good that it is confirmed. 

By now, there seems to be no limit to the 
uses of this simple model. It is, for example, 
a natural description of adatoms on a solid 
surface (but with inconvenient constraints 
on the numbers of atoms). More generally, 
the Ising lattice is potentially a way of 
modelling continuous systems by discon
tinuous representations of them, although 
the difficulty ofthe algebra in more than two 
dimensions is an obvious drawback. But 
should not the model come into its own as a 
means of dealing with the essentially two
dimensional arrays of atoms in the appar
ently conducting planes of the new high
temperature superconductors? 

That, as it happens, is what U. Low and 
V. J. Emery from the Brookhaven National 
Laboratory, K. Fabricus from the University 
ofWuppertal and S. A. Kivelson from UCLA 
have now done (Phys. Rev. Lett. 72, 1918-
1921; 1994). The planes containing copper 
and oxygen atoms in these materials are 
believed to embody the essence ofthe super-

conductivity. It is also known that the elec
tronic state of the atoms is not that of elec
trical neutrality. When electrons are trans
ferred to the electronic conduction band, the 
atoms left behind are short of electrons and 
thus behave as electron "holes". Moreover, 
in the nature of things, these holes are 
mobile within the copper-oxygen planes. 

It may be that what makes high-tempera
ture superconductivity possible is the for
mation of physical regions within these 
planes where the density of holes is greater 
than expected. But how could such a state of 
affairs come about? To ask that, in a plane in 
which positive and negative charges are free 
to move, the positive charges should con
gregate together, expelling the others, is to 
require a great deal of the principle that the 
energy of a static system tends to a mini
mum. It can only happen if there is some 
mechanism that yields an energetic benefit 
when electron holes are close together. 

That is the inspiration for a variation on 
the Ising theme that, in the short run, will 
probably do more to command the attention 
of Isingologists than to throw light on the 
real mechanism in high-temperature super
conductors. The novelty of this version of 
the model is that it takes account of a short
range interaction between the nearest-neigh
bour vertices that tends to increase the like
lihood that neighbouring vertices will be 
occupied by holes (and vice versa) and a 
long-range interaction between all vertices 
which is essentially the Coulomb interaction 
(like charges repel each other and all that). 

Solving this model exactly is a lost cause. 
What Low and his colleagues have done it to 
represent the state of each vertex of their 
square lattice by a three-valued variable which 
can take the values + 1, 0 and -1, representing 
a hole, the average state of a vertex and the 
opposite of a hole respectively. 

What they are able to show is that the 
least energetic state of such a system can 
consist of rectangular patches in which each 
vertex is occupied by a hole; that may mildly 
delight the superconductivity community. 
They also show that in a system such as this, 
with contradictory long and short-range or
dering forces, there may be many ordered 
phases related to each other by exceedingly 
complicated phase diagrams if the relative 
strengths of the interactions are chosen ap
propriately. It would be rash to think that 
this will clear up the scandal of why it has 
taken ten years not to find an explanation for 
such an important phenomenon, but it is at 
least a new approach. 

John Maddox 
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