Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contrast dependence of colour and luminance motion mechanisms in human vision

Abstract

CONVENTIONAL views of visual perception propose a colour-blind pathway conveying motion information and a motion-blind pathway carrying colour information1,2. Recent studies show that motion perception is not always colour blind3,4, is partially dependent on attention5,6, can show considerable perceptual slowing around isoluminance7–9 and is contrast-dependent10,11. If there is a single motion pathway, receiving luminance and chromatic input, then the dependence of relative perceived velocity on relative stimulus contrast should be the same for both luminance and chromatic targets. Here we provide a distinctive characterization of the motion mechanisms using a robust velocity-matching task. A relative contrast scale allows direct comparison of the performance with luminance and chromatic targets. The results show that the perceived speed of slowly moving coloured targets at isoluminance has a steep contrast dependence. The perceived speed of slowly moving luminance targets shows a much lower contrast dependence. At high speeds the contrast dependence is low for both luminance and isoluminant stimuli, although the behaviour is unlike either of the slow mechanisms. The results suggest two independent pathways that perceive slowly moving targets: one is luminance-sensitive and the other is colour-sensitive. Fast movement is signalled via a single motion pathway that is contrast-invariant and not colour blind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zeki, S. M. Nature 274, 423–428 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Livingstone, M. S. & Hubel, D. H. J. Neuroscl. 7, 3416–3468 (1987).

    Article  CAS  Google Scholar 

  3. Cavanagh, P. & Anstis, S. Vision Res. 31, 2109–2148 (1991).

    Article  CAS  Google Scholar 

  4. Cavanagh, P. & Favreau, O. E. Vision Res. 25, 1593–1601 (1985).

    Article  Google Scholar 

  5. Cavanagh, P. Science 257, 1563–1565 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Derrington, A. M. & Henning, B. G. Vision Res. 33, 799–811 (1993).

    Article  CAS  Google Scholar 

  7. Ramachandran, V. S. & Gregory, R. L. Nature 275, 55–56 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Cavanagh, P., Tyler, C. W. & Favreau, O. E. J. opt. Soc. Am. A1, 893–899 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Mullen, K. & Bolton, J. C. Vision Res. 32, 483–488 (1992).

    Article  CAS  Google Scholar 

  10. Thompson, P. Vision Res. 22, 377–380 (1982).

    Article  CAS  Google Scholar 

  11. Stone, L. S. & Thompson, P. Vision Res. 32, 1535–1549 (1992).

    Article  CAS  Google Scholar 

  12. Kulikowski, J. J. & Tolhurst, D. J. J. Physiol., Lond. 232, 149–163 (1972).

    Article  Google Scholar 

  13. Watson, A. B. & Robson, J. G. Vision Res. 21, 1115–1122 (1981).

    Article  CAS  Google Scholar 

  14. Adelson, E. H. & Bergen, J. R. J. opt. Soc. Am. A2, 284–299 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Watson, A. B. & Ahumada, A. J. J. opt. Soc. Am. A2, 322–342 (1985).

    Article  ADS  CAS  Google Scholar 

  16. van Santen, J. P. H. & Sperling, G. J. opt. Soc. Am. A2, 300–321 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Heeger, D. J. J. opt. Soc. Am A4, 1455–1471 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Merigan, W. H., Byrne, C. E. & Maunsell, J. H. R. J. Neurosci. 11, 3422–3429 (1991).

    Article  CAS  Google Scholar 

  19. Gegenfurtner, K. R. & Kiper, D. C. J. opt. Soc. Am. A9, 1880–1888 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Stromeyer, C. F. III, Cole, G. R. & Kronauer, R. E. Vision Res. 25, 219–237 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawken, M., Gegenfurtner, K. & Tang, C. Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367, 268–270 (1994). https://doi.org/10.1038/367268a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367268a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing