Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore

Abstract

POTASSIUM channels are highly selective and allow the rapid flux of potassium ions through their pore1. Several studies have implicated the H5 (P or SS1-SS2) segment2,3 as part of the pore in voltage-gated ion channels4–10. The proposal that H5 spans at least 80% of the electric potential drop across the K+ channel pore5,11 is based on altered internal tetraethylammonium sensitivity arising from mutations of H5 residues that are 100% conserved among K+ channels having differing sensitivity to tetraethyl-ammonium5–7,12,13. Here we report that the S6 segment is also involved in K+ ion permeation and in governing the sensitivity to internal tetraethylammonium and barium. Transplanting the S6 segment of NGK2 into Shaker causes this S6 chimaera to adopt the single-channel conductance and sensitivity to internal tetraethylammonium and barium ions from the NGK2 channel. The differences between NGK2 and Shaker in external tetraethylammonium sensitivity, but not single-channel conductance, can be attributed to the differences in their H5 sequences. Three non-conserved S6 residues have been found to affect either single-channel conductance or internal tetraethylammonium sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1991).

    Google Scholar 

  2. Guy, H. R. & Seetharamulu, P. Proc. natn. Acad. Sci. U.S.A. 83, 508–521 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Science 237, 770–775 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Yool, A. J. & Schwarz, T. S. Nature 349, 700–704 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Yellen, G., Jurman, M., Abramson, T. & MacKinnon, R. Science 251, 939–942 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Hartmann, H. A. et al. Science 251, 942–944 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kirsch, G. E. et al. Neuron 8, 499–505 (1992).

    Article  CAS  Google Scholar 

  8. Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K. & Numa, S. Nature 356, 441–443 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Backx, P. H., Yue, D. T., Lawrence, J. H., Marban, E. & Tomaselli, G. F. Science 257, 248–251 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Heginbotham, L., Abramson, T. & MacKinnon, R. Science 258, 1152–1155 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Miller, C. Science 252, 1092–1096 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Kirsch, G. E., Taglialatela, M. &. & Brown, A. M. Am. J. Physiol. 261, C583–590 (1991).

    Article  CAS  Google Scholar 

  13. Taglialatela, M. et al. Molec. Pharmac. 40, 299–307 (1991).

    CAS  Google Scholar 

  14. Schwarz, T. S., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. Nature 331, 137–142 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Yokoyama, S. et al. FEBS Lett. 259, 37–42 (1989).

    Article  CAS  Google Scholar 

  16. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Science 250, 533–538 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Armstrong, C. M. & Binstock, L. J. gen. Physiol. 48, 859–872 (1965).

    Article  CAS  Google Scholar 

  18. Armstrong, C. M. J. gen. Physiol. 50, 491–503 (1966).

    Article  CAS  Google Scholar 

  19. Armstrong, C. M. J. gen. Physiol. 54, 553–575 (1969).

    Article  CAS  Google Scholar 

  20. Armstrong, C. M. J. gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  21. Armstrong, C. M. & Hille, B. J. gen. Physiol. 59, 388–400 (1972).

    Article  CAS  Google Scholar 

  22. Armstrong, C. M. & Taylor, S. R. Biophys. J. 30, 473–488 (1980).

    Article  CAS  Google Scholar 

  23. Armstrong, C. M., Swenson, R. P. & Taylor, S. R. J. gen. Physiol. 80, 663–682 (1982).

    Article  CAS  Google Scholar 

  24. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Neuron 7, 547–556 (1991).

    Article  CAS  Google Scholar 

  25. Choi, K. L., Mossman, C., Aube, J. & Yellen, G. Neuron 10, 533–541 (1993).

    Article  CAS  Google Scholar 

  26. Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. Nature 353, 86–90 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Neuron 11, 739–749 (1993).

    Article  CAS  Google Scholar 

  28. Woodhull, A. M. J. gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  29. Baldwin, T. J., Tsaur, M-L., Lopez, G. A., Jan, Y. N. & Jan, L. Y. Neuron 7, 471–483 (1991).

    Article  CAS  Google Scholar 

  30. Lopez, G. A., Jan, Y. N. & Jan, L. Y. Neuron 7, 327–336 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, G., Nung Jan, Y. & Jan, L. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore. Nature 367, 179–182 (1994). https://doi.org/10.1038/367179a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367179a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing