Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid human-induced evolution of insect–host associations

Abstract

RAPID evolution of host association is now occurring independently in two populations of the host-specialist butterfly Euphydryas editha, each of which has recently incorporated a novel host species into its diet. The reasons for these episodes of rapid evolution lie in human land use practices: logging in one case and cattle ranching in the other. In contrast to other insects that have used tolerance of human activities to expand their ranges into disturbed habitats1–3, these rare butterflies have remained at their original sites and evolved adaptations to the changes occurring at those sites. At both sites, the proportion of insects preferring the novel host has increased, in one case clearly because of genetic changes in the insect population. This process is now starting to generate insects that refuse to accept their ancestral host, foreshadowing a new problem in conservation biology. By adapting genetically to human-induced changes in their habitat, the insects risk becoming dependent on continuation of the same practices. This is a serious risk, because human cultural evolution can be even faster than the rapid genetic adaptation that the insects can evidently achieve.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Strong, D. R. Science 185, 1064–1066 (1974).

    Article  ADS  Google Scholar 

  2. Strong, D. R., Lawton, J. H. & Southwood, T. R. E. Insects on Plants: Community Patterns and Mechanisms (Blackwell, Oxford, 1984).

    Google Scholar 

  3. Cornell, H. V. & Hawkins, B. A. Am. Nat. (in the press).

  4. Thomas, C. D., Singer, M. C., Mallet, J. L. B., Parmesan, C. & Billington, H. L. Evolution 41, 892–901 (1987).

    Article  CAS  Google Scholar 

  5. Singer, M. C. Symp. R. ent. Soc., Lond. 11, 81–88 (1984).

    Google Scholar 

  6. Wiklund, C. Oecologia 18, 185–197 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Jermy, T. Am. Nat. 124, 609–630 (1984).

    Article  Google Scholar 

  8. Rausher, M. D. Evolution 38, 582–592 (1984).

    Article  Google Scholar 

  9. Thompson, J. N. Evolution 42, 118–128 (1988).

    Article  Google Scholar 

  10. Futuyma, D. J. & McCafferty, S. S. Evolution 44, 1885–1913 (1990).

    Article  Google Scholar 

  11. Jaenike, J. A. Rev. ecol. Syst. 21, 243–273 (1990).

    Article  Google Scholar 

  12. Prokopy, R. J., Diehl, S. R. & Cooley, S. S. Oecologia 76, 138–147 (1988).

    Article  ADS  Google Scholar 

  13. Via, S. A. Rev. Ent. 35, 421–426 (1991).

    Article  Google Scholar 

  14. Scriber, J. M., Biebink, B. L. & Snider, D. Oecologia 87, 360–368 (1991).

    Article  ADS  Google Scholar 

  15. Bowers, M. D., Stamp, N. E. & Collinge, S. K. Ecology 73, 526–536 (1992).

    Article  Google Scholar 

  16. Singer, M. C., Ng, D., Vasco, D. & Thomas, C. D. Am. Nat. 139, 9–20 (1992).

    Article  Google Scholar 

  17. Grant, B. R. & Grant, P. R. Proc. R. Soc. B251, 111–117 (1993).

    Article  ADS  Google Scholar 

  18. Ehrlich, P. R. Science 134, 108–109 (1961).

    Article  ADS  CAS  Google Scholar 

  19. Singer, M. C., Ng, D. & Thomas, C. D. Evolution 42, 977–985 (1988).

    Article  CAS  Google Scholar 

  20. Moore, S. D. Ecology 70, 1726–1737 (1989).

    Article  Google Scholar 

  21. Jaenike, J. Evol. Ecol. 7, 103–108 (1993).

    Article  Google Scholar 

  22. Thomas, C. D. & Singer, M. C. Ecology 68, 1262–1267 (1987).

    Article  Google Scholar 

  23. Singer, M. C., Thomas, C. D., Billington, H. L. & Parmesan, C. Anim. Behav. 37, 751–759 (1989).

    Article  Google Scholar 

  24. Singer, M. C. Evolution 37, 389–403 (1983).

    Article  Google Scholar 

  25. Harrison, S., Murphy, D. D. & Ehrlich, P. R. Am. Nat. 132, 360–382 (1988).

    Article  Google Scholar 

  26. Higgins, L. G. & Riley, N. D. A Field Guide to the Butterflies of Britain and Europe 4th edn (Collins, London, 1980).

    Google Scholar 

  27. Chinery, M. New Generation Guide to the Butterflies and Day-flying Moths of Britain and Europe (Collins, London, 1989).

    Google Scholar 

  28. Warren, M. S. Bull. Br. ecol. Soc. 16, 24–26 (1985).

    Google Scholar 

  29. Thomas, J. A. Symp. R. ent. Soc., Lond. 11, 333–353 (1984).

    Google Scholar 

  30. Thomas, J. A. Symp. Br. ecol. Soc. 31, 149–197 (1991).

    Google Scholar 

  31. Warren, M. S. Bull. Br. ecol. Soc. 20, 212–216 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, M., Thomas, C. & Parmesan, C. Rapid human-induced evolution of insect–host associations. Nature 366, 681–683 (1993). https://doi.org/10.1038/366681a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366681a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing